Cho n lẻ, CMR : n^3 - n chia hết cho 24
CMR n^3-3n^2-n+3 chia hết cho 24 với mọi n lẻ
\(n^3-3n^2-n+3\)
\(=n^2\left(n-3\right)-\left(n-3\right)\)
\(=\left(n-3\right)\left(n^2-1\right)\)
\(=\left(n-3\right)\left(n-1\right)\left(n+1\right)\)
Với n lẻ =>(n-3)(n-1)(n+1) là tích 3 số chẵn liên tiếp
\(\Rightarrow\left(n-3\right)\left(n-1\right)\left(n+1\right)⋮24\)
\(\Rightarrowđpcm\)
a) CMR: ( n^2+n-1)^2 chia hết cho 24 với mọi số nguyên n
b) CMR: n^3+6n^2 +8n chia hết cho 48 với mọi số n chẵn
c) CMR : n^4 -10n^2 +9 chia hết cho 384 với mọi số n lẻ
cmr : với mọi số tự nhiên lẻ n thì n3-n luôn chia hết cho 24
n3-n=n(n-1)(n+1)
n(n-1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
n lẻ => n+1 chẵn n-1 chẵn mà tích 2 số chẵn chia hết cho 4 =>n(n-1)(n+1) chia hết cho 4
Ta thấy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 =>n(n-1)(n+1) chia hết cho 3
=>n(n-1)(n+1) chia hết cho 2.3.4=24(ĐPCM)
cmr vơi mọi n thuộc z thì
1,B=n^3-7n+19 không chia hết cho 6
2, Tổng bình phương của 2 số lẻ không chia hết cho 4
3,hiệu bình phương của hai số lẻ chia hết cho 8
4, n(n+2)(25n^2-1) chia hết cho 24
Câu 2
Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2
Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1
=4(K^2+K+H^2+H)+2
Vì 4(K^2+K+H^2+H) chia hết cho 4
=>4(K^2+K+H^2+H)+2 ko chia hết cho 4
Mk biết làm vậy thôi nha
Cho n thuộc Z. Cmr:
1, 3n4-14n3+21n2-10n chia hết cho 24
2, n5-5n3+4n chia hết cho 12
Cmr với n là số tự nhiên lẻ thì:
1, n2+4n+3 chia hết cho 8
2, n2 + 3n2 - n - 3 chia hết cho 48
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
Cho n là một số tự nhiên lẻ. CMR : 24n +1 chia hết cho 25 nhưng không chia hết cho 23
24^n+1=(24+1)*A=25*A chia hết cho 25
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)
vì n chẵn nên đặt n=2k
\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)
vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2
=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16
\(n^3+4n=n^3-4n+8n\)
đặt n=2k
=>\(8\left(k-1\right)k\left(k+1\right)+16k\)
mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với