\(n^3-3n^2-n+3\)
\(=n^2\left(n-3\right)-\left(n-3\right)\)
\(=\left(n-3\right)\left(n^2-1\right)\)
\(=\left(n-3\right)\left(n-1\right)\left(n+1\right)\)
Với n lẻ =>(n-3)(n-1)(n+1) là tích 3 số chẵn liên tiếp
\(\Rightarrow\left(n-3\right)\left(n-1\right)\left(n+1\right)⋮24\)
\(\Rightarrowđpcm\)