cho tam giác abc vuông tại a, lấy điểm E thuộc Bc sao cho BA=Be. Tia phân giác BD cắt AC tại D.
a)CM AD=ED
b) Gọi M là giao điểm của AB và DE.
cm tam giác ADM = tam giác EDC
Giúp mình với các bạn ơi.
Cho tam giác ABC vuông tại A, AB > AC . Từ B kẻ BD là tia phân giác của góc ABC (D thuộc AC). Trên BC lấy E sao cho AB = BE.
a) Chứng minh: AD = DE.
b) Gọi F là giao điểm của các tia BA và ED. Chứng minh tam giác ADF = tam giác EDC
c) chứng minh BD vuông góc với CF
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=ED
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
c: Ta có: ΔADF=ΔEDC
nên DF=DC và AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BC=BF
hay B nằm trên đường trung trực của CF(1)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BD\(\perp\)CF
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân c) Cho BD cắt FC tại N, trên tia đối NB lấy M sao cho NM=ND. CM: FM // CD. d) Tính chu vi tam giác ABC , biết AB/AC= 3/4 ; BC=15 cm CẦN GẤP :)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
a) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay ED\(\perp\)BC(Đpcm)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)+A(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AF=EC(hai cạnh tương ứng)
Ta có: BA+AF=BF(A nằm giữa B và F)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(gt)
và AF=EC(cmt)
nên BF=BC
Xét ΔBFC có BF=BC(cmt)
nên ΔBFC cân tại B(Định nghĩa tam giác cân)
Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?
Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.
Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE
Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF
Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!
1)CHO TG ABC VUÔNG TẠI A.VẼ AH VUÔNG VỚI BC TẠI H.TIA PHÂN GIÁC GÓC HAB CẮT BC TẠI D.TIA PHÂN GIÁC GÓC HAC CẮT BC TẠI E.
CM: GIAO ĐIỂM CÁC ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC ABC LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC ADE.
2)CHO TAM GIÁC ABC CÓ AC>AB.TRÊN CA LẤY E SAO CHO CE=AB.CÁC ĐƯỜNG TRUNG TRỰC CỦA BE VÀ AC CẮT NHAU TẠI O.
CM:A)TAM GIÁC AOB=TAM GIÁC AOC
B)AO LÀ TIA PHÂN GIÁC CỦA GÓC BAC
3)CHO TAM GIÁC ABC ĐỀU.TRÊN AB,BC,AC LẤY CÁC ĐIỂM D,E,F SAO CHO AD=BE=CF.
CM:A)TAM GIÁC DEF ĐỀU.
B)GỌI O LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC ABC.CM:Ó CŨNG LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC DEF
mau lên giùm mình đê các bạn ơi.mau,mau đê
4)ch tam giác ABC vuông tại A và AB<AC . trên cạnh BC lấy điểm E sao cho BE=BA, kẻ BD là tia phân giác của góc ABC( D thuộc AC)
a)chứng minh: tam giác ABC= tam giác EBD
b)chứng minh: DE vuông góc BC
c)Gọi K là giao điểm của BA và ED. Chứng minh: BK = BC
5)so sánh 2 số : \(^{2^{300}}\) và \(3^{200}\)
4) a.Ta có:
\(BA=BE\)
\(ABD=DBE\rightarrow\Delta ABD=\Delta EBDchungBD\)
b) Từ câu a \(\rightarrow BED=BAD=90^o\)
\(\rightarrow DE\text{⊥}BC\)
c) Ta có :
\(BKD=ADK=ACB+DEC=90^o\)
\(BKD=ACB\)
\(\text{Δ B D K = Δ B D C ( g . c . g )}\)
\(BK=BC\)
5)
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Mà \(8< 9\Rightarrow2^{300}< 3^{200}\)
Bài 5:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\\ 3^{200}=\left(3^2\right)^{100}=9^{100}\\ Vì:8< 9\Rightarrow8^{100}< 9^{100}\\ \Rightarrow2^{300}< 3^{200}\)
Trong tam giác ABC vuông tại A có góc B = 60 độ
a, trên cạnh BC lấy điểm D sao cho BA= BD qua D vẽ đường vuông góc với BC cắt tia đối của tia AB tại E . C/M tam giác ABC và tam giác DBE
c, gọi H là giao điểm của ED và AD. C/m BH là tia phân giác của góc ABC
d, qua B vẽ đường vuông góc với AB cắt ED tại K . C/m tam giác HBK đều
e, AB+ AC -BC/2 < AD< AD+AC+BC/2
hép mi
Cho tam giác ABC vuông tại A ( AB>AC). Tia phân giác của góc B cắt AC ở E . Trên BC lấy điểm D sao cho BD bằng BA. Đường thẳng DE cắt đương thẳng AB tại F
a) CM ED vuông góc với BC
b)CMR tam giác CF cân tại B
c)Gọi H là giao điểm của BE và FC. Tính BC biết BH= 8cm, FC= 12cm
d)CM AD // FC
Cho tam giác ABC vuông tại A ( AB>AC). Tia phân giác của góc B cắt AC ở E . Trên BC lấy điểm D sao cho BD bằng BA. Đường thẳng DE cắt đương thẳng AB tại F
a) CM ED vuông góc với BC
b)CMR tam giác CF cân tại B
c)Gọi H là giao điểm của BE và FC. Tính BC biết BH= 8cm, FC= 12cm
d)CM AD // FC
a)Xét ΔABD và ΔEBD có:
AB=BE(gt)
ABDˆ=EBDˆ(gt)ABD^=EBD^(gt)
BD:cạnh chung
=> ΔABD=ΔEBD(c.g.c)
=> BADˆ=BEDˆ=90oBAD^=BED^=90o
=> DE⊥BCDE⊥BC
Vì: ΔABD=ΔEBD(cmt)
=>AD=DE
Vì: AB=BE(gt) ; AD=DE(cmt)
=> B,D thuộc vào đường trung trực của đt AE
=>BD là đường trung trực của đt AE
=>AE⊥BDAE⊥BD
b) Xét ΔDEC vuông tại E(cmt)
=> DE<DCDE<DC
Mà: DE=AD
=> AD<DC
c)Vì: BF=BA+AF ; BC=BE+EC
Mà: BF=BC(gt); BE=BA(gt)
=>AF=EC
Xét ΔADF và ΔEDC có:
AF=EC(cmt)
FADˆ=DECˆ=90o(cmt)FAD^=DEC^=90o(cmt)
AD=DE(cmt)
=>ΔADF=ΔEDC(c.g.c)
Cho tam giác ABC vuông tại A ( AB>AC). Tia phân giác của góc B cắt AC ở E . Trên BC lấy điểm D sao cho BD bằng BA. Đường thẳng DE cắt đương thẳng AB tại F
a) CM ED vuông góc với BC
b)CMR tam giác CF cân tại B
c)Gọi H là giao điểm của BE và FC. Tính BC biết BH= 8cm, FC= 12cm
d)CM AD // FC