Chứng minh rằng:
3^n+3+3^n+1+2^n+3+^n+2 chia hết cho 6
n thuôc N
chứng minh rằng:
a, n (n+5) - (n-3 ) (n=2 ) chia hết cho 6
b, 9 n62 + 3n -1) (n+2) -n^3 + 2 chia hết cho 5
c, ( 6n+1 ) (n+5 ) - (3n+5 ) ( 2n+1 ) chia hết cho 2
a: \(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: \(=\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)
\(=5n^2+5n⋮5\)
c: \(=6n^2+30n+n+5-6n^2-3n-10n-5\)
\(=18n⋮2\)
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Chứng minh rằng n4+6n3+11n2+6n chia hết cho 24 với mọi n thuộc N.
Ta có:
n4+6n3+11n2+6n = n4+2n3+4n3+8n2+3n2+6n = (n4+2n3)+(4n3+8n2)+(3n2+6n) = n3(n+2)+4n2(n+2)+3n(n+2)
= (n+2)(n3+4n2+3n) = (n+2)n(n2+3n) = n(n+1)(n+2)(n+3)
Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n4+2n3+4n3+8n2+3n2+6n chia hết cho 24.
chứng minh rằng với mọi n thuôc N* ta có B=5n (5n +1)-6n (3n +2) chia hết cho 91
chứng minh rằng (22^6n+2+3) chia hết cho 19 với mọi n thuộc N
Lời giải:
$2^3\equiv -1\pmod 9$
$\Rightarrow 2^{6n}\equiv (-1)^{2n}\equiv 1\pmod 9$
$\Rightarrow 2^{6n+2}=2^{6n}.4\equiv 4\pmod 9$
$\Rightarrow 2^{6n+2}=9k+4$ với $k$ tự nhiên.
Vì $2^{6n+2}$ chẵn nên $9k$ chẵn $\Rightarrow k$ chẵn.
Khi đó:
\(2^{2^{6n+2}}+3=2^{9k+4}+3\)
$2^9\equiv -1\pmod {19}$
$\Rightarrow 2^{9k}\equiv (-1)^k\equiv 1\pmod {19}$ (do $k$ chẵn)
$\Rightarrow 2^{9k+4}\equiv 16\pmod {19}$
$\Rightarrow 2^{2^{6n+2}}+3=2^{9k+4}+3\equiv 16+3\equiv 19\equiv 0\pmod {19}$
Vậy $2^{2^{6n+2}}+3\vdots 19$
1/ chứng minh rằng : 2^n+3 +2^n+1 +2^n chia hết cho 11
2/ chứng minh rằng : 2.3^n+1 +3^n+2 chia hết cho 5
3/ chứng minh : 3^15 +3^14 +3^12 chi hết cho 57
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)