1-3x/2x + 3x-2/2x-1 - 2-3x/2x-4x2
1-3x/2x + 3x-2/2x-1 + 2-3x/4x2-2x
\(2x;2x-1;4x^2-2x=2x\left(2x-1\right)\)
\(MTC=2x\left(2x-1\right)\)
\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{2-3x}{4x^2-2x}\)
\(=\dfrac{\left(1-3x\right).2x\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{\left(3x-2\right).2x}{\left(2x-1\right).2x}+\dfrac{2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{2x\left(1-3x\right)\left(2x-1\right)+2x\left(2x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{-8x^2+4x+4x^2-4x+2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2-3x+2}{2x\left(2x-1\right)}\)
#AEZn8
\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{2-3x}{4x^2-2x}=\dfrac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{2x\left(3x-2\right)}{2x\left(2x-1\right)}+\dfrac{2-3x}{2x\left(2x-1\right)}=\dfrac{-6x^2+5x-1}{2x\left(2x-1\right)}+\dfrac{6x^2-4x}{2x\left(2x-1\right)}+\dfrac{2-3x}{2x\left(2x-1\right)}=\dfrac{\left(-6x^2+6x^2\right)+\left(5x-4x-3x\right)+\left(-1+2\right)}{2x\left(2x-1\right)}=\dfrac{-2x}{2x\left(2x-1\right)}=\dfrac{-1}{2x-1}\)
Giải PT
1 ) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
2) 4x2 -1 = (2x + 1)(3x – 5)
3) (x + 1)2 = 4(x2 – 2x + 1)
4) 2x3+ 5x2 – 3x = 0
5) {2x{ = 3x – 2
6) x + 15 = 3x – 1
7) 2 – x = 0,5x – 4
1) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0
⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0
⇔ (2x + 1).(3x – 2 – 5x + 8) = 0
⇔ (2x + 1)(6 – 2x) = 0
⇔\(\left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=3\end{matrix}\right.\)
Vậy.....
2) 4x2 -1 = (2x + 1)(3x - 5)
⇔ (2x-1)(2x+1)-(2x+1)(3x-5)=0
⇔ (2x+1)(2x-1-3x+5)=0
⇔ (2x+1)(4-x)=0
⇔ \(\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=4\end{matrix}\right.\)
Vậy...
3)
(x + 1)2 = 4(x2 – 2x + 1)
⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0
⇔ x2 + 2x +1- 4x2 + 8x – 4 = 0
⇔ - 3x2 + 10x – 3 = 0
⇔ (- 3x2 + 9x) + (x – 3) = 0
⇔ -3x (x – 3)+ ( x- 3) = 0
⇔ ( x- 3) ( - 3x + 1) = 0
⇔\(\left[{}\begin{matrix}x-3=0\\-3x+1=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy......
4) 2x3+5x2-3x=0
⇒2x3-x2+6x2-3x=0
⇒(2x3-x2)+(6x2-3x)=0
⇒x2(2x-1)+3x(2x-1)=0
⇒(x2+3x)(2x-1)=0
⇒ hoặc x2+3x=0⇒x(x+3)=0⇒hoặc x=0 hoặc x=-3
hoặc 2x-1=0⇒x=0,5
Vậy ...
5)2x=3x-2
⇒2x-3x=-2
⇒-x=-2
⇒x=2
6) x+15=3x-1
⇒x-3x=-1-15
⇒-2x=-16
⇒x=8
7)2-x=0,5x-4
⇒-x-0,5x=-4-2
⇒-1,5x=-6
⇒x=4
Giải phương trình
1) 2x ( x – 3 ) + 5 ( x – 3 ) = 0
2) ( x2 – 4 ) – ( x – 2 ) ( 3 – 2x ) = 0
3) ( 2x – 1 )2 – ( 2x + 5 )2 = 11
4) ( 2x + 1 )2 ( 3x – 5 ) = 4x2 – 1
5) 3x2 – 5x – 8 = 0
6) ( 2x + 1 )2 ( 3x – 5 ) = 4x2 – 1
7) 3x2 – 5x – 8 = 0
8) \(\left|x-5\right|=3\)
9) \(\left|2x-5\right|=3-x\)
10) \(\left|2x+1\right|=\left|x-1\right|\)
11) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
12) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
1) Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
2) Ta có: \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3) Ta có: \(\left(2x-1\right)^2-\left(2x+5\right)^2=11\)
\(\Leftrightarrow4x^2-4x-1-4x^2-20x-25=11\)
\(\Leftrightarrow-24x=11+1+25=37\)
hay \(x=-\dfrac{37}{24}\)
5) Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow3x^2+3x-8x-8=0\)
\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)
8) Ta có: \(\left|x-5\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
10) Ta có: \(\left|2x+1\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-1\\2x+x=1-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
Giải các phương trình sau:
a ) 2 x - 5 3 = 2 - x 6 b ) 3 x + 1 = 3 x + 1 2 c ) 2 x + 3 x 2 + x + 1 + 2 x - 1 = 4 x 2 - 1 x 3 - 1
⇔ 4x - 10 = 2 - x
⇔ 4x + x = 2 + 10 ⇔ 5x = 12 ⇔ x = 12/5
Vậy: S = {12/5}
b) (3x + 1) = (3x + 1)2
⇔ (3x + 1)2 - (3x + 1) = 0
⇔ (3x + 1)[(3x + 1) - 1] = 0
ĐKXĐ:x ≠ 1
Quy đồng mẫu hai vế của phương trình ta được:
Khử mẫu hai vế, ta được:
(2x + 3)(x - 1) + 2(x2 + x + 1) = 4x2 - 1
⇔ 2x2 + x - 3 + 2x2 + 2x + 2 = 4x2 - 1
⇔ 3x - 1 = -1
⇔ 3x = 0 ⇔ x = 0 (thỏa mãn điều kiện)
Vậy: S = {0}
cộng phân thức đại số :
câu 1 : ( x + 10 ) / ( x - 2 ) + ( x - 18 ) / ( x - 2 ) + ( x +2 ) / ( x2 - 4 )
câu 2 : ( 3 - 3x ) / 2x + ( 3x - 1 ) / ( 2x - 1 ) + ( 11x - 5 ) / ( 2x - 4x2)
\(\dfrac{x+10}{x-2}+\dfrac{x-18}{x+2}+\dfrac{x+2}{x^2-4}=\dfrac{\left(x+10\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-18\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+12x+20+x^2-16x-36+x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2-3x-14}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x^2+4x\right)-\left(7x+14\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x\left(x+2\right)-7\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-7}{x-2}\)
cộng phân thức đại số :
( 3 - 3x ) / 2x + ( 3x - 1 ) / ( 2x - 1 ) + ( 11x - 5 ) / ( 2x - 4x2)
\(\dfrac{3-3x}{2x}+\dfrac{3x-1}{2x-1}+\dfrac{11x-5}{2x-4x^2}\\ =\dfrac{\left(3-3x\right)\left(1-2x\right)}{2x\left(1-2x\right)}-\dfrac{2x\left(3x-1\right)}{2x\left(1-2x\right)}+\dfrac{11x-5}{2x\left(1-2x\right)}\\ =\dfrac{3-9x+6x^2}{2x\left(1-2x\right)}-\dfrac{6x^2-2x}{2x\left(1-2x\right)}+\dfrac{11x-5}{2x\left(1-2x\right)}\\ =\dfrac{3-9x+6x^2-6x^2+2x+11x-5}{2x\left(1-2x\right)}\\ =\dfrac{-2}{2x\left(1-2x\right)}\\ =\dfrac{-1}{x\left(1-2x\right)}\)
Tìm x:
a)(3x-7)2=(2-2x)2
b)x2-8x+6=0
c)4x2-2x-1=0
d)x4-4x2-32=0
\(a,\left(3x-7\right)^2=\left(2-2x\right)^2\)
a,\(=>\left(3x-7\right)^2-\left(2-2x\right)^2=0\)
\(< =>\left(3x-7+2-2x\right)\left(3x-7-2+2x\right)=0\)
\(< =>\left(x-5\right)\left(5x-9\right)=0=>\left[{}\begin{matrix}x=5\\x=1,8\end{matrix}\right.\)
b, \(x^2-8x+6=0< =>x^2-2.4x+16-10=0\)
\(< =>\left(x-4\right)^2-\sqrt{10}^2=0\)
\(=>\left(x-4+\sqrt{10}\right)\left(x-4-\sqrt{10}\right)=0\)
\(=>\left[{}\begin{matrix}x=4-\sqrt{10}\\x=4+\sqrt{10}\end{matrix}\right.\)
c, \(4x^2-2x-1=0\)
\(< =>\left(2x\right)^2-2.2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{5}{4}=0\)
\(=>\left(2x-\dfrac{1}{2}\right)^2-\left(\dfrac{\sqrt{5}}{2}\right)^2=0\)
\(=>\left(2x+\dfrac{-1+\sqrt{5}}{2}\right)\left(2x-\dfrac{1+\sqrt{5}}{2}\right)=0\)
\(=>\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{4}\\x=\dfrac{1+\sqrt{5}}{4}\end{matrix}\right.\)
d,\(x^4-4x^2-32=0\)
đặt \(t=x^2\left(t\ge0\right)=>t^2-4t-32=0\)
\(< =>t^2-2.2t+4-6^2=0\)
\(=>\left(t-2\right)^2-6^2=0=>\left(t-8\right)\left(t+4\right)=0\)
\(=>\left[{}\begin{matrix}t=8\left(tm\right)\\t=-4\left(loai\right)\end{matrix}\right.\)\(=>x=\pm\sqrt{8}\)
Tính:
a)(3x+2)2-(4-2x).(5x+1)
b)(2x-3).(9+6x+4x2)-(2x+3)3
\(a,=9x^2+12x+4-18x-4+10x^2=19x^2-6x\\ b,=8x^3-27-8x^3-36x^2-54x-27=-36x^2-54x-54\)
. Rút gọn:
a) -2x(-3x +2)- (x+2)2
b) (x+2)(x2- 2x+4) -2( x+1)( 1-x)
c) (2x-1)2- 2(4x2-1) + (2x+1)2
\(a,=6x^2-4x-x^2-4x-4=5x^2-8x-4\\ b,=x^3+8-2\left(1-x^2\right)=x^3+8-2+2x^2=x^3+2x^2+6\\ c,=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\\ =\left(2x+1-2x+1\right)^2=4\)
Có thể giúp mình thực hiện cách chi tiết ko ạ ? Gv dạy mik ko hiểu mấy
Rút gọn biểu thức:
a) (x + 2)(x – 2) – (x + 1)2
b) (2x – 1)(4x2 + 2x + 1) – (2x + 1)( 4x2 – 2x + 1)
3. Tìm x biết:
a) (x + 2)(x2 – 2x + 4) – x(x2 – 2) = 15
b) (x – 1)3 – x(x2 – 3x – 4) = 13
thanks
\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)
Bài 2:
a) \(=x^2-4-x^2-2x-1=-2x-5\)
b) \(=8x^3-1-8x^3-1=-2\)
Bài 3:
a) \(\Rightarrow x^3+8-x^3+2x=15\)
\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)
\(\Rightarrow7x=14\Rightarrow x=2\)