Đơn giản biểu thức
tan2 x(2cos2x+sin2x-1)+cos2x
B = tan2 x . (cot2x + cos2x + sin2x – 1 ) + 10
B = sin2 230 + + sin2670 – cos600
Giải pt
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(sin2x-cos2x+3sinx-cosx-1=0\)
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Giải: (2cos2x-1).(sin2x+cos2x)=1
Giải pt (2cos2x-1)(sin2x+cos2x)=1
P/t \(\Leftrightarrow2cos2x.sin2x-sin2x+2cos^22x-cos2x-1=0\)
\(\Leftrightarrow sin4x-sin2x+cos4x-cos2x=0\)
\(\Leftrightarrow2sinx.cos3x-2sin3x.sinx=0\)
\(\Leftrightarrow sinx\left(cos3x-sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(1\right)\\cos3x=sin3x\left(2\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow x=k\pi\left(k\in Z\right)\)
(2) \(\Leftrightarrow sin3x-cos3x=0\) \(\Leftrightarrow\sqrt{2}sin\left(3x-\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow3x-\dfrac{\pi}{4}=k\pi\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\left(k\in Z\right)\)
Vậy ...
A, sin2 x- 4sinx +3=0
B, 2cos2x- cosx-1=0
C, 3sin2x- 2cosx +2=0
D, 3cosx+ cos2x -cos3x +1=2sinx.sin2x
E, tan2 x+(\(\sqrt{3}\) +1)tanx-\(\sqrt{3}\)=0
F, \(\dfrac{\sqrt{3}}{sin^2x}\)=3cotx + \(\sqrt{3}\)
a, \(sin^2x-4sinx+3=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(sinx-3\right)=0\)
\(\Leftrightarrow sinx=1\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
b, \(2cos^2-cosx-1=0\)
\(\Leftrightarrow\left(cosx-1\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c, \(3sin^2x-2cosx+2=0\)
\(\Leftrightarrow3-3sin^2x+2cosx-5=0\)
\(\Leftrightarrow3cos^2x+2cosx-5=0\)
\(\Leftrightarrow\left(cosx-1\right)\left(3cosx+5\right)=0\)
\(\Leftrightarrow cosx=1\)
\(\Leftrightarrow x=k2\pi\)
Giải: \(\left(2cos2x-1\right).\left(sin2x+cos2x\right)=1\)
=>\(2\cdot cos2x\cdot sin2x+2cos^22x-sin2x-cos2x-1=0\)
=>\(2cos2x\cdot sin2x+2\cdot cos^22x-1=sin2x+cos2x\)
=>\(sin4x+cos4x=sin2x+cos2x\)
=>\(sin\left(4x+\dfrac{pi}{4}\right)=sin\left(2x+\dfrac{pi}{4}\right)\)
=>4x+pi/4=2x+pi/4+k2pi hoặc 4x+pi/4=pi-2x-pi/4+k2pi
=>2x=k2pi hoặc 6x=1/2pi+k2pi
=>x=kpi hoặc x=1/12pi+kpi/3
Giải phương trình:
a, 2sin2x - cos2x = 7sinx + 2cosx - 4
b, sin2x - cos2x + 3sinx - cosx -1 = 0
c, sin2x - 2cos2x + 3sinx - 4cosx + 1 = 0
a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4
<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0
- sinx=1 => 2cos2x-2cosx+2=0
pt trên vn
b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0
<=> cos(2sinx-1)+2sin2x+3sinx-2=0
<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0
<=> (2sinx-1)(cosx+sinx+2)=0
<=> sinx=1/2 hoặc cosx+sinx=-2(vn)
<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)
Giải phương trình:
\(\left(2Cos2x-1\right)\left(Sin2x+Cos2x\right)=1\)
\(\left(2cos2x-1\right)\left(sin2x+cos2x\right)=1\)
\(\Leftrightarrow2sin2x.cos2x+2cos^22x-sin2x-cos2x-1=0\)
\(\Leftrightarrow sin4x+cos4x-sin2x-cos2x=0\)
\(\Leftrightarrow2cos3x.sinx-2sin3x.sinx=0\)
\(\Leftrightarrow2sinx\left(cos3x-sin3x\right)=0\)
\(\Leftrightarrow2\sqrt{2}sinx.cos\left(3x+\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos\left(3x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\3x+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\end{matrix}\right.\)
(sin2x+cos2x)cosx+2cos2x-sinx=0
Đơn giản biểu thức:
1. A=Sinx.Cosx.Cos2x
2. B=Sin4x - Cos4x
3. C=Sinx.Cos2x.Cos4x.Cos8x.Cos16x
4. D=\(\dfrac{Cos4x-Tanx}{Cos2x}\)
5. E=sin4x-6sin2x.cos2x+cos4x
6. F=\(\dfrac{Sin2x}{Sinx}-\dfrac{Cos2x}{Cosx}\)