Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Aftery
Xem chi tiết
Cô Hoàng Huyền
1 tháng 2 2018 lúc 16:21

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

Mai Anh Phạm
6 tháng 12 2021 lúc 17:05

NGU

nguyễn phan gia linh
Xem chi tiết
Nguyen hai nam
Xem chi tiết
Luminos
30 tháng 12 2021 lúc 15:30

a/  Xét △ABM và △DMC có:

AM=MD(gt)

MB=MC(gt)

^AMB=^CMD(đối đỉnh)

⇒ΔAMB=ΔDMC(cmt)(đpcm).

b/ Ta có: ΔAMB=ΔDMC(cmt)

⇒^MAB=^MDC⇒^MAB=^MDC[ hai góc ở vị trí so le trong]

Vậy: AB // CD (đpcm).

Nhan Nguyen
Xem chi tiết
Lê
28 tháng 2 2021 lúc 21:26

em tự vẽ hình nha 

xét △AMB và △DMC có:

BM = MC

AM = MD

góc AMB = góc DMC  ( đối đỉnh )

=> △AMB = △DMC 

=> góc ABM = góc DCM và ở vị trí sole trong 

=> AB // CD 

ta có AB vuông góc với AC 

=> CD vuông góc với AC ( đpcm )

 

Mai Như Ý
Xem chi tiết
Kiều Vũ Linh
4 tháng 12 2023 lúc 13:55

loading... c) Do M là trung điểm của BC (gt)

⇒ BM = MC

Xét hai tam giác vuông: ∆AHM và ∆DKM có:

MA = MD (gt)

∠AMH = ∠DMK (đối đỉnh)

⇒ ∆AHM = ∆DKM (cạnh huyền - góc nhọn)

⇒ HM = KM (hai cạnh tương ứng)

Ta có:

BK = BM + KM

CH = CM + HM

Mà BM = CM (cmt)

KM = HM (cmt)

⇒ BK = CH

d) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

⇒ AB // DC và AB = DC

Tứ giác ABCE có:

I là trung điểm của AC (gt)

I là trung điểm của BE (gt)

⇒ ABCE là hình bình hành

⇒ AB // CE và AB = CE

Do AB // CE (cmt)

AB // DC (cmt)

⇒ C, D, E thẳng hàng (theo tiên đề Ơ-clít)

Ta có:

AB = CE (cmt)

AB = DC (cmt)

⇒ CD = CE

⇒ C là trung điểm của DE

Bao Ngoc Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 22:50

a: Vì ΔABC đều

nên AB=AC=BC

mà BC=CE

nên AB=AC=BC=CE

b: Xét ΔABE có 

AC là đường trung tuyến

AC=BE/2

Do đó: ΔABE vuông tại A

c: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

Trần Hoài Anh
Xem chi tiết
Khanh Linh Ha
Xem chi tiết
Nguyễn Linh Chi
15 tháng 12 2019 lúc 19:42

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

Khách vãng lai đã xóa
Phạm Như Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 13:53

a: Xét tứ giác ABDC có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AD

Do đó: ABDC là hình bình hành

Suy ra: CD//AB

b: Ta có: ABDC là hình bình hành

nên AB=CD(1)

Xét ΔBAE có 

BH là đường cao ứng với cạnh AE

BH là đường trung tuyến ứng với cạnh AE

Do đó: ΔBAE cân tại B

Suy ra: AB=BE(2)

Từ (1) và (2) suy ra BE=CD

d: Xét ΔAED có 

M là trung điểm của AD

H là trung điểm của AE

Do đó: MH là đường trung bình của ΔAED

Suy ra: MH//ED

hay ED//BC