Chứng minh rằng n^2 + 3n + 4 chia hết cho n + 3 .
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
Chứng minh rằng : 3^n+2 - 2^n+4 + 3n + 2n chia hết cho 30 với mọi n nguyên dương
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
chứng minh rằng:
(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2) +4 chia hết cho 5, với mọi n
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
chứng minh rằng ,với mọi số n nguyên
a/ (4n+3)^2-25 chia hết cho 8
b/(2n+3)^2-9 chia hết cho 4
c/(3n+4)^2-16 chia hết cho 3
\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)
\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)
\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)
\(=3n\left(3n+8\right)⋮3\)
chứng minh rằng : \(5n^3+15n^2+10\)chia hết cho 30
chứng minh rằng \(3^{4n+4}-4^{3n+3}\)chia hết cho 17 (n thuộc N)
Chứng minh rằng A=11.12.13.14+21.22.23.24.25 chia hết cho 5,9,15,77
Chứng minh rằng B=(2012^9+2012^8+2012^7-2012^6) chia hết cho 2013
Chứng minh rằng A= 7+7^2+7^3+…+7^2000 chia hết cho 8
Tìm n thuộc tập hợp N để
a, n+6 chia hết cho n b,4n+5chia hết cho n. c, n+5 chia hết cho n+1. đ, 3n + 4 chia hết cho n-1
Bài 1 : Chứng minh rằng với mọi số nguyên n : ( Giải từng ý => like )
a, (3n + 2) - (n - 6) chia hết cho 2
b, (n+2) + (n+4) + 6 chia hết cho 2
c, (n+3) + 2 . (n+4) + 1 chia hết cho 3
a, (3n+2) - (n-6) = 3n+2-n+6 = 2n+8 luôn chia hết cho 2
b, (n+2) + (n+4) + 6 = n+2+n+4+6 = 2n+12 luôn chia hết cho 2
c, (n+3)+2(n+4)+1 = n+3+2n+8+1 = 3n+12 luôn chia hết cho 3
chứng minh rằng :
(3n+4)2-16 chia hết cho 3 với mọi số nguyên n
\(\left(3n+4\right)^2-16\)
\(\Leftrightarrow\left(3n+4\right)^2-4^2\)
\(\Leftrightarrow\left(3n+4-4\right)\left(3n+4+4\right)\)
\(\Leftrightarrow3n\left(3n+8\right)\) chia hết cho 3 với mọi n
(3n+4)2-16
= (3n+4)2-42
= (3n+4-4)(3n+4+4)
= 3n(3n+8)
Vì 3n(3n+8):3 với mọi n
=> (3n+4)2-16:3 với mọi n
Ta có : ( 3n + 4)2 - 16
= ( 3n + 4 )2 - 42
= ( 3n + 4 - 4)( 3n + 4 + 4)
= 3n( 3n + 8 )
⇒ 3n( 3n + 8 ) ⋮ 3
Vậy ( 3n + 4)2 - 16 ⋮ 3 với mọi số nguyên n