Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My Nguyễn
Xem chi tiết
Đoán Xem
19 tháng 7 2023 lúc 8:32

Ta có: \(\left(x-1\right)^2\ge0\forall x=>-\left(x-1\right)^2\le0\forall x=>B=8-\left(x-1\right)^2\le8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy MinB = 8 khi và chỉ khi x=1

Nguyễn Tiến Hậu
Xem chi tiết
Nguyễn Trần An Thanh
20 tháng 1 2017 lúc 18:25

Ta có: \(B=-x^2-2x+2\)

\(\Rightarrow BMax\Leftrightarrow-x^2-2x+2Max\)

\(\Leftrightarrow-\left(x^2+2x-2\right)Max\)

\(\Leftrightarrow-\left(x^2+2x+1-3\right)Max\)

\(\Leftrightarrow-\left[\left(x+1\right)^2-3\right]Max\)

\(\Leftrightarrow-\left(x+1\right)^2+3Max\)

Vì \(-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+1\right)^2+3\le3\forall x\)

Dấu = xảy ra \(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

\(\Rightarrow MaxB=3\Leftrightarrow x=-1\)

Nguyễn Anh
Xem chi tiết
Nguyễn Huy Tú
13 tháng 7 2021 lúc 18:23

undefined

Nguyễn Anh
13 tháng 7 2021 lúc 18:22

cau A thay = bằng cộng ạ

 

Ngọc Nhã Uyên Hạ
13 tháng 7 2021 lúc 18:26

undefined

nguyenhathuyanh
Xem chi tiết
ILoveMath
16 tháng 1 2022 lúc 16:43

Ta có: \(2\left(x-1\right)^2+3\ge3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow B=\dfrac{1}{2\left(x-1\right)^2+3}\le\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(B_{max}=\dfrac{1}{3}\Leftrightarrow x=1\)

Đỗ Phương Thảo
Xem chi tiết
Nguyễn Hiền Linh
26 tháng 1 2020 lúc 9:51

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

Khách vãng lai đã xóa
fan FA
Xem chi tiết
pham trung thanh
28 tháng 12 2017 lúc 15:45

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

Lê Cao Phong
Xem chi tiết
Pham Van Hung
1 tháng 12 2018 lúc 11:58

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

Lê Cao Phong
2 tháng 12 2018 lúc 11:32

Thanks bạn ;)

Hà Linh
Xem chi tiết
Quỳnh Anh
6 tháng 8 2021 lúc 21:31

Trả lời:

Ta có: \(x^2-6x+10=x^2-2.x.3+9+1=\left(x-3\right)^2+1\)

Lại có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Leftrightarrow\) \(\left(x-3\right)^2+1\ge1\forall x\)

\(\Leftrightarrow\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của A = 5 khi x = 3

Khách vãng lai đã xóa
Trần Minh Ánh
Xem chi tiết
Nguyễn Việt Hoàng
18 tháng 8 2020 lúc 15:41

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)

\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)

\(N=\frac{-x^3-2x^2-2x}{x}\)

\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)

\(N=-\left(x^2+2x+2\right)\)

b) \(N=-\left(x^2+2x+2\right)\)

\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)

\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)

Max N = -1 \(\Leftrightarrow x=-1\)

Vậy .......................

Khách vãng lai đã xóa