phân tích đa thức thành nhân tử
a)x2-xy+x-y
b)2xy-x2-y2+16
c)x2-6x-16
Bài 2: Phân tích đa thức sau thành nhân tử
a) x2 + 2xy + y2 - 4
b) x2 - y2 + x + y
c) y2 + x2 + 2xy - 16
a) \(x^2+2xy+y^2-4=\left(x+y\right)^2-2^2\)
\(=\left(x+y-2\right)\left(x+y+2\right)\)
b) \(x^2-y^2+x+y=\left(x-y\right)\left(x+y\right)+1\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+1\right)\)
c) \(y^2+x^2+2xy-16=x^2+2xy+y^2-16\)
\(=\left(x+y\right)^2-4^2=\left(x+y+4\right)\left(x+y-4\right)\)
Phân tích các đa thức thành nhân tử
a) 3x2 yz + 6xyz
b) 5 ( x + 2 ) - x2 - 2x
c) x2 + 2xy + y2 - 22
\(a,=3xyz\left(x+2\right)\\ b,=5\left(x+2\right)-x\left(x+2\right)=\left(x+2\right)\left(5-x\right)\\ c,=\left(x+y\right)^2-z^2=\left(x+y-z\right)\left(x+y+z\right)\)
a) 3x2yz + 6xyz = 3xyz(x+2)
b) 5(x+2) - x2 - 2x = 5(x+2) - x(x+2) = (5+x)(x+2)
c) x2 + 2xy + y2 - 22 = (x2+2xy+y2) - 22 = (x+y)2 - 22 = (x+y+2)(x+y-2)
3x^2yz + 6xyz=3xyz(x+2)
5(x+2)-x^2-2x=5(x+2)-(x^2+2x)=5(x+2)-x(x+2)=(x+2)(5-x)
x^2+2xy+y^2-2^2=(x+y)^2 -2^2=(x+y+2)(x+y-2)
Câu 1: Phân tích đa thức thành nhân tử
a. 6x² - 3xy
b. x2 -y2 - 6x + 9
c. x2 + 5x - 6
a: \(6x^2-3xy\)
\(=3x\cdot2x-3x\cdot y\)
=3x(2x-y)
b: \(x^2-y^2-6x+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
c: \(x^2+5x-6\)
=\(x^2+6x-x-6\)
=x(x+6)-(x+6)
=(x+6)(x-1)
Câu 1: Phân tích đa thức thành nhân tử
a. 6x² - 3xy
b. x2 -y2 - 6x + 9
c. x2 + 5x - 6
a: \(6x^2-3xy\)
\(=3x\cdot2x-3x\cdot y\)
\(=3x\left(2x-y\right)\)
b: \(x^2-y^2-6x+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
c: \(x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=x\left(x+6\right)-\left(x+6\right)\)
\(=\left(x+6\right)\left(x-1\right)\)
Nếu tổng các hệ số trong đa thức bằng 0 thì đây thức có một nghiệm là 1, đa thức trên sẽ có một nghiệm là 1 nên đa thức có thể phân tích thành (x - 1) x a
Nếu tổng các hệ số bậc chẵn bằng tổng hệ số bậc lẻ thì đa thức có một nghiệm là -1
Ví dụ đa thức -x² + 5x + 6 có tổng hệ số bằng chẵn bằng -1 + 6 = 5 bằng hệ số bậc lẻ, đa thức trên sẽ có một nghiệm là -1 nên đa thức có thể phân tích thành (a + 1) x a
a. 6x² - 3xy = 3x x 2x - y
b. x^2 - y^2 - 6x + 9 = x² - 6x + 9 - y²( x - 3)^2 - y ^2 = x - 3 - y x (x - 3) + y
c. x² + 5x - 6 = x² - x + 6x - 6 = (x - 1) x (x + 6)
phân tích đa thức thành nhân tử
a) 9-x2-2xy-y2
`9-x^2-2xy-y^2`
`=9-(x^2+2xy+y^2)`
`=3^2-(x+y)^2`
`=(3+x+y)(3-x-y)`
9-x2-2xy-y2=9-(x2+2xy+y2)=32-(x+y)2=(3-x-y)(3+x+y)
a) Ta có: \(9-x^2-2xy-y^2\)
\(=9-\left(x+y\right)^2\)
\(=\left(9-x-y\right)\left(9+x+y\right)\)
Phân tích đa thức thành nhân tử
a)A=x2+7x+7y-y2
b)B=x2+2xy+y2-3x-3y
\(a,A=x^2+7x+7y-y^2\\ =x^2-y^2+7x+7y\\ =\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\\ =\left(x+y\right)\left(x-y+7\right)\)
\(b,B=x^2+2xy+y^2-3x-3y\\ =\left(x+y\right)^2-3\left(x+y\right)\\ =\left(x+y\right)\left(x+y-3\right)\)
phân tích đa thức thành nhân tử
a) 9-(x-y)2
b)x2+6x+9-y2
a) \(9-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
b) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+y+3\right)\left(x-y+3\right)\)
Phân tích đa thức thành nhân tử:
a) x3 - 2x2 - 2x - 4
b) xy + 1 - x - y
c) x2 - 4xy + 4y2 - 4y
d) 16 - x2 + 2xy - y2
\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)
\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)
\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)
\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)
b: =xy-x-y+1
=x(y-1)-(y-1)
=(x-1)(y-1)
c: =(x-2y)^2-4y
\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)
d: =16-(x^2-2xy+y^2)
=16-(x-y)^2
=(4-x+y)(4+x-y)
Phân tích đa thức thành nhân tử (bằng phương pháp nhóm hạng tử)
c/ 5x2 + 3y + 15x + xy d/ x2 + 6x + 9 – y2
e/ x2 – y2 + 2x + 1 f/ x2 – 2xy – 9 + y2
c) \(5x^2+3y+15x+xy=5x\left(x+3\right)+y\left(x+3\right)=\left(x+3\right)\left(5x+y\right)\)
d) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)
e) \(x^2-y^2+2x+1=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
f) \(x^2-2xy-9+y^2=\left(x^2-2xy+y^2\right)-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
c: \(5x^2+15x+3y+xy\)
\(=5x\left(x+3\right)+y\left(x+3\right)\)
\(=\left(x+3\right)\left(5x+y\right)\)
d: \(x^2+6x+9-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)
e: \(x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1-y\right)\left(x+1+y\right)\)
f: \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-9\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
Bài 2. Phân tích đa thức thành nhân tử
a) 5x – 15y | b) 5x2y2 + 15x2y + 30xy2 |
c) x3 – 2x2y + xy2 – 9x | d) x(x2 – 1) + 3(x2 – 1) |
e) x2 – 10x + 25 | g) x2 – 64 |
h) (x + y)2 – (x2 – y2) | i) 5x2 + 5xy – x – y |
k) x2 – 25 + y2 + 2xy | l) 2xy – x2 – y2 + 16 |
m) (x – 2)(x – 3) + (x – 2) - 1 | n) 3(x – 1) + 5x( 1 – x) |
p) 12y(2x – 5) + 6xy(5 – 2x) | q) ax – 2x – a2 + 2a |
Bài 3. Phân tích đa thức thành nhân tử
a) a2 – b2 – 2a + 1 | b) x2 – 2x – 4y2 – 4y |
c) x2 + 4x – y2 + 4 | d) x4 – 1 |
e) x4 + x3 + x2 + x | g) a2 + 2ab + b2 – ac - bc |
d: \(x\left(x^2-1\right)+3\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
e: \(x^2-10x+25=\left(x-5\right)^2\)
g: \(x^2-64=\left(x-8\right)\left(x+8\right)\)
h: \(\left(x+y\right)^2-\left(x^2-y^2\right)\)
\(=\left(x+y\right)\left(x+y-x+y\right)\)
\(=2y\left(x+y\right)\)
i: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
k: \(x^2+2xy+y^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
l: \(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
a: \(5x-15y=5\left(x-3y\right)\)
b: \(5x^2y^2+15x^2y+30xy^2=5xy\left(xy+3x+6y\right)\)
c: \(x^3-2x^2y+xy^2-9x\)
\(=x\left(x^2-9-2xy+y^2\right)\)
\(=x\left(x-y-3\right)\left(x-y+3\right)\)