Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 15:14

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

Phương Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 21:01

a: ĐKXĐ: x<>1; x<>-1

\(A=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x-1}\)

\(=\dfrac{x+1}{x-1}-\dfrac{1}{x-1}=\dfrac{x}{x-1}\)

b: x^2+3x+2=0

=>x=-1(loại) hoặc x=-2(nhận)

Khi x=-2 thì A=-2/(-3)=2/3

👁💧👄💧👁
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 9:22

\(P=2\sqrt{x}+2+\dfrac{2}{\sqrt{x}}\in Z\\ \Leftrightarrow2⋮\sqrt{x}\Leftrightarrow\sqrt{x}\inƯ\left(2\right)=\left\{2\right\}\left(x\ge0;x\ne1\right)\\ \Leftrightarrow x=4\)

Vậy là xong đề rồi hả?

Qasalt
Xem chi tiết
Võ Nguyễn Thương Thương
Xem chi tiết
Dương Thiên Thanh
Xem chi tiết
hilo
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 22:07

Δ=(2m-2)^2-4(m-3)

=4m^2-8m+4-4m+12

=4m^2-12m+16

=4m^2-12m+9+7=(2m-3)^2+7>=7>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(\left(\dfrac{1}{x1}-\dfrac{1}{x2}\right)^2=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}-\dfrac{2}{x_1x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(\left(x_1+x_2\right)^2-2x_1x_2\right)}{\left(x_1\cdot x_2\right)^2}-\dfrac{2}{x_1\cdot x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(2m-2\right)^2-2\left(m-3\right)}{\left(-m+3\right)^2}-\dfrac{2}{-m+3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-8m+4-2m+6}{\left(m-3\right)^2}+\dfrac{2}{m-3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-10m+10+2m-6}{\left(m-3\right)^2}=\dfrac{\sqrt{11}}{2}\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(4m^2-8m+4\right)\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(2m-2\right)^2\)

=>\(\Leftrightarrow\left(\dfrac{m-3}{2m-2}\right)^2=\dfrac{2}{\sqrt{11}}\)

=>\(\left[{}\begin{matrix}\dfrac{m-3}{2m-2}=\sqrt{\dfrac{2}{\sqrt{11}}}\\\dfrac{m-3}{2m-2}=-\sqrt{\dfrac{2}{\sqrt{11}}}\end{matrix}\right.\)

mà m nguyên

nên \(m\in\varnothing\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 7:54

loading...  loading...  

Nguyễn Kim Thành
Xem chi tiết
 Mashiro Shiina
25 tháng 11 2017 lúc 23:20

\(\left(2x-3\right)\left(x-\dfrac{1}{4}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x-\dfrac{1}{4}=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{4}\end{matrix}\right.\)