\(\left(2x-3\right)\left(x-\dfrac{1}{4}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x-\dfrac{1}{4}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{4}\end{matrix}\right.\)
\(\left(2x-3\right)\left(x-\dfrac{1}{4}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x-\dfrac{1}{4}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
1,Giá trị x thỏa mãn : \(\frac{x}{-8}=\frac{-18}{x}\)
2, Tập hợp giá trị x nguyên thỏa mãn : | 2x-7| + | 2x + 1 | \(\le\) 8
3,Cho \(\frac{a}{b}=\frac{2,1}{2,7}\) ; 5a- 4b = -1 . Giá trị \(\left(a-b\right)^2\) là
4, Cho \(\frac{a}{b}=\frac{9,6}{12,8};a^2+b^2=25\) . Giá trị | a + b| là ......
Câu 1:
Giá trị nhỏ nhất của biểu thức C là \(\frac{1}{3}\left(x-\frac{2}{5}\right)^2\) + |2y+1| - 2,5
Câu 2:
Cho 2 số x,y thỏa mãn (2x +1)2 + |y-1,2| = 0. Giá trị x,y?
Câu 3:
Giá trị x = __ thì biểu thức D = \(\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2\) - |8x -1| + 2016 đạt giá trị lớn nhất?
Câu 4:
Các số tự nhiên n thỏa mãn \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
Cách giải luôn nhé!
1. Cho a, b, c, x, y, z khác 0 thỏa mãn bx=ay; cy=bx
Chứng minh rằng: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
2. Tìm các giá trị x, y thỏa mãn \(\left|2x-3y\right|^{2015}+\left(x+y+x\right)^{2014}=0\)
3. Tìm các cặp số (x;y) thỏa mãn:\(\dfrac{y^4-x^4}{15}=\dfrac{y^4+x^4}{17}\) và x.y=2
Giá trị x > 0 thỏa mãn: \(\frac{11}{14}+\left|\frac{2}{7}-x\right|-\frac{5}{2}=\frac{4}{3}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
a) Cho \(M=\dfrac{42-x}{x-15}\) . Tìm số nguyên x để m đạt giá trị nhỏ nhất .
b) Tìm x sao cho \(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)
TÌM GIÁ TRỊ NGUYÊN CỦA x THỎA MÃN
\(\left(2x-3\right).\left(x-\frac{1}{4}\right)< 0\)