Cho tam giác ABC. Trên BC lấy M sao cho MB=1/2BC. CMR vector AI=1/3 vector AB+2/3 vector AC.
cho tam giác ABC : a)tìm các điểm M và N sao cho vector MA - vector MB + vector MC = vector 0 và 2 vector NA + vector NB + vector NC = vector 0
b) với các điểm M,N ở câu a), tìm các số p và q sao cho vector MN = p nhân vector AB + q nhân vector AC
a:
b: \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}\)
\(=\overrightarrow{CB}+\dfrac{1}{2}\cdot\overrightarrow{AK}\)
\(=\overrightarrow{CA}+\overrightarrow{AB}+\dfrac{1}{2}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\overrightarrow{AC}+\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
\(=\dfrac{5}{4}\cdot\overrightarrow{AB}-\dfrac{3}{4}\cdot\overrightarrow{AC}\)
cho tam giác ABC . Gọi M là trung điểm AB , N là trung điểm AC sao cho NA = 2NC . Gọi K là trung điểm MN : a) chứng minh rằng : vector BC = \(\frac{3}{2}\) nhân vector AN - 2 nhân vector AM ; b) chứng minh rằng : vector AK = \(\frac{1}{4}\) nhân vector AB + \(\frac{1}{3}\) nhân vector AC
a) \(\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}=-2\overrightarrow{AM}+\frac{3}{2}\overrightarrow{AN}\)
b) Kẻ hình bình hành AMPN, ta có:
\(\overrightarrow{AK}=\frac{1}{2}\overrightarrow{AP}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\right)=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
cho tam giác ABC : a)tìm các điểm M và N sao cho vector MA - vector MB + vector MC = vector 0 và 2 vector NA + vector NB + vector NC = vector 0
a: \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
=>\(\overrightarrow{BM}+\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{0}\)
=>\(\overrightarrow{BA}+\overrightarrow{MC}=\overrightarrow{0}\)
=>\(\overrightarrow{BA}=\overrightarrow{CM}\)
=>BAMC là hình bình hành
=>M là điểm thỏa mãn BAMC là hình bình hành
Gọi K là trung điểm của BC
\(2\overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}=\overrightarrow{0}\)
=>\(2\overrightarrow{NA}+2\overrightarrow{NK}=\overrightarrow{0}\)
=>\(\overrightarrow{NA}+\overrightarrow{NK}=\overrightarrow{0}\)
=>N là trung điểm của AK
Giúp mình bài này với ! Cám ơn ạ🌸
Cho tam giác ABC. Lấy điểm M, N, P: vector MB - 2 lần vector MC = vector NA + 2 lần vector NC = vector PA + vector PB = vector 0
a) tính vector PM, vector PPn theo vector AB và vector AC
b) cm 3 điểm M, N, P thẳng hàng.
1.Cho tam giác ABC với BC=a, CA=b, AB=c. Tìm điểm I sao cho: a nhân vector IA + b nhân vector IB +c nhân vector IC= vector 0.
2.Cho tam giác ABC, đường tròn (I) nội tiếp tam giác tiếp xúc với các cạnh BC, CA, AB lần lượt tại M, N, P. Chứng minh rằng:
a nhân vector IM +b nhân vector IN +c nhân vector IP=vector 0.
Cứu em với mai kiểm tra rồi.
cho tam giác ABC có A(1 , 2) , B(-2 , 6) , C(9 , 8) . Tìm tập hợp điểm M thỏa mãn : 3 nhân giá trị tuyệt đối của ( vector MA + vector MB ) = 2 nhân giá trị tuyệt đối của ( vector MA + vector MB + vector MC )
Gọi M(x,y) là điểm cần tìm
\(\overrightarrow{MA}+\overrightarrow{MB}=(-1-2x;8-2y)\)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=(8-3x;16-3y)\)
Theo giả thiết \(3|\overrightarrow{MA}+\overrightarrow{MB}|=2|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|\), suy ra
\(3\sqrt{(-1-2x)^2+(8-2y)^2}=2\sqrt{(8-3x)^2+(16-3y)^2}\)
\(\Leftrightarrow 9(4x^2+4y^2+4x-32y+65)=4(9x^2+9y^2-48x-96y+320)\)
\(\Leftrightarrow 228x+96y-695=0\)
Vậy tập các điểm M cần tìm là đường thẳng 228x+96y-695=0
Em thật sự ko biết làm nhưng thật sự em lại biết làm!!
Cho tam giác ABC trọng tâm G.gọi M là trung điểm của AG a) tính 4 vector MA + vector MB + vector MC b) tính vector AG.vector BC
trong mặt phẳng Oxy cho A(2 ,5) , B(1 ,2) ,C(4 , 1) . Tìm tọa độ M sao cho vector MB + 3 vector MC = 2 vector AB .
cho tam giác ABC với 3 đường trung tuyến AD , BE , CF . Chứng minh rằng : vector BC nhân vector AD + vector CA nhân vector BE + vector AB nhân vector CF = 0
1, Cho tam giác ABC vuông tại A, AB=3 và AC=4. Vector CB+vector AB có độ dài là bao nhiêu?
2, Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm các đoạn thẳng AB và CD. Tìm đẳng thức liên hệ của vector IJ.
3, Cho 4 điểm A, B, C, D. Tìm đẳng thức lện hệ của vector AB+vector CD.
4, Cho 6 điểm A, B, C, D, E, F. Vector AB+vector CD+vector FA+vector BC+vector EF+vector DE=?
Câu 1:
Gọi M là trung điểm của AC
AM=AC/2=2
\(BM=\sqrt{3^2+2^2}=\sqrt{13}\)
\(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\cdot BM=2\sqrt{13}\)
Câu 6:
\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EF}+\overrightarrow{FA}\)
\(=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)