Sử dụng máy tính cầm tay tìm nghiệm của phương trình bậc hai một ẩn (làm tròn kết quả đến hàng phần mười): \(\sqrt 2 {x^2} - 4x - \sqrt 3 = 0\).
Sử dụng máy tính cầm tay tính các căn bậc hai số học sau (làm tròn kết quả với độ chính xác 0,005, nếu cần).
\(a)\sqrt {15} ;b)\sqrt {2,56} ;c)\sqrt {17256} ;d)\sqrt {793881} \)
Độ chính xác 0,005 tức là ta cần làm tròn đến hàng phần trăm
\(a)\sqrt {15}=3,8729...\approx 3,87\\b)\sqrt {2,56} = 1,6\\c)\sqrt {17256} =131,3620... \approx 131,36\\d)\sqrt {793881} = 891\)
Sử dụng máy tính cầm tay tìm căn bậc hai số học của các số sau rồi làm tròn các kết quả với độ chính xác 0,005.
a) 3; b) 41; c) 2 021
Làm tròn các kết quả với độ chính xác 0,005 tức là làm tròn đến hàng phần trăm.
\(\begin{array}{l}a)\sqrt 3 = 1,73205.... \approx 1,73\\b)\sqrt {41} = 6,40312.... \approx 6,40\\c)\sqrt {2021} = 44,95553.... \approx 44,96\end{array}\)
Làm tròn các số với độ chính xác 0,005 đc kết quả là:
a)√3=1,73205....≈1,73
b)√41=6,40312....≈6,40
c)√2021=44,95553....≈44,96
Sử dụng máy tính cầm tay, tính \(\sqrt[3]{{15}}:5 - 2\) (trong kết quả lấy hai chữ số ở phần thập phân).
Bằng máy tính cầm tay, ta tính được kết quả là: \(\sqrt[3]{{15}}:5 - 2 \approx - 1,51\)
Dùng máy tính cầm tay để A) tính độ dài cạnh của một miếng đất hình vuông có S=12 996m² B) Tính bán kính của 1 hình tròn có S=100 cm²(làm tròn kết quả đến hàng phần mười)
Lời giải:
a. Ta có: $12996=114\times 114$ nên độ dài cạnh miếng đất là $114$ (m)
b. $3,14 R^2=100$
$R^2=100:3,14$=31,84$
$R=\sqrt{31,84}=5,6$ (cm)
Sử dụng máy tính cầm tay làm tròn các số sau đến chữ số thập phân thứ nhất:
\(a = \sqrt 2 ;b = \sqrt 5 \)
Tính tổng hai số thập phân nhận được.
Ta có: a = 1,414…; b = 2,236
Làm tròn đến chữ số thập phân thứ nhất, ta được: \(a \approx 1,4;b \approx 2,2\)
Tổng 2 số thập phân nhận được là: 1,4 + 2,2 = 3,6
Dùng máy tính cầm tay để tính các căn bậc hai số học sau (làm tròn đến 3 chữ số thập phân).
\(a)\sqrt {2250} ;\,\,\,\,\,\,b)\sqrt {12} ;\,\,\,\,\,\,\,c)\sqrt 5 \,\,\,\,\,\,\,\,\,d)\sqrt {624} \)
\(a)\sqrt {2250} \approx 47,434;\,\,\,\,\,\,b)\sqrt {12} \approx 3,461;\,\,\,\,\,\,\,c)\sqrt 5 \approx 2,236\,\,\,\,\,\,\,\,\,d)\sqrt {624} \approx 24,980\)
Sử dụng máy tính cầm tay, tính các luỹ thừa sau đây (làm tròn đến chữ số thập phân thứ sáu):
a) \(1,{2^{1,5}}\);
b) \({10^{\sqrt 3 }}\);
c) \({\left( {0,5} \right)^{ - \frac{2}{3}}}\).
a) \(1,2^{1,5}=1,314534\)
b) \(10^{\sqrt{3}}=53,957374\)
c) \(\left(0,5\right)^{-\dfrac{2}{3}}=1,587401\)
Sử dụng máy tính cầm tay, tính giá trị các biểu thức sau (làm tròn kết quả đến chữ số thập phân thứ tư):
a) \({\log _3}15\);
b) \(\log 8 - \log 3\);
c) \(3\ln 2\).
a) \(log_315=2,4650\)
c) \(3In2=2,0794\)
Sử dụng máy tính cầm tay, tính giá trị các biểu thức sau (làm tròn kết quả đến chữ số thập phân thứ sáu):
a) \({\log _5}0,5\);
b) \(\log 25\);
c) \(\ln \frac{3}{2}\).
a) \(log_50,5=-0,439677\)
c) \(In\left(\dfrac{3}{2}\right)=0,405465\)
Đưa các phương trình sau về dạng ax2 + 2b'x + c = 0 và giải chúng. Sau đó, dùng bảng số hoặc máy tính để viết gần đúng nghiệm tìm được (làm tròn kết quả đến chữ số thập phân thứ hai):
3x2 + 3 = 2(x + 1)
3x2 + 3 = 2(x + 1)
⇔ 3x2 + 3 = 2x + 2
⇔ 3x2 + 3 – 2x – 2 = 0
⇔ 3x2 – 2x + 1 = 0
Phương trình có a = 3; b’ = -1; c = 1; Δ’ = b’2 – ac = (-1)2 – 3.1 = -2 < 0
Vậy phương trình vô nghiệm.