Kết quả của phép tính \(\sqrt {27} :\sqrt 6 .2\sqrt {18} \) là
A. 12 B. 18 C. 72 D. 144
thực hiện phép tính:
a) \(-\sqrt{27}+6\sqrt{\frac{1}{3}}-\sqrt{12}\)
b) \(\sqrt{\frac{72}{9}}:\sqrt{18}-\frac{5}{6}\)
c) \(\frac{2}{3}\sqrt{3}-\frac{1}{4}\sqrt{18}+\frac{2}{5}\sqrt{2}-\frac{1}{4}\sqrt{12}\)
Tính chính xác kết quả của phép tính sau:\(A=5\sqrt[3]{6\sqrt{32}}-3\sqrt[3]{9\sqrt{162}}-11\sqrt[6]{18}+2\sqrt[3]{75\sqrt{50}}-7\sqrt[3]{45\sqrt{27}}\)
1. Cho kết quả phép tính \(\sqrt{9-4\sqrt{5}}\) là:
A. một kết quả khác
B. 2-\(\sqrt{5}\)
C. 3-2\(\sqrt{5}\)
D. \(\sqrt{5}\)-2
2. phương trình \(\sqrt{x-2}=2\) có nghiệm là
A. 4 ; -4
B. 6 ; -6
C. 6
D. 4
Thực hiện các phép tính sau trên máy tính cầm tay (trong kết quả lấy 4 chữ số ở phần thập phân):
a) \({4^6}.\sqrt {0,1} \)
b) \(\sqrt[8]{{2,{1^{18}} + 1}} - \sqrt {2,{1^{12}} + 1} \)
c) \(\frac{{1,{5^3}}}{{\sqrt[3]{{6,8}}}}\)
a) \({4^6}.\sqrt {0,1} = 1295,2689\)
b) \(\sqrt[8]{{2,{1^{18}} + 1}} - \sqrt {2,{1^{12}} + 1} = - 80,4632\)
c) \(\frac{{1,{5^3}}}{{\sqrt[3]{{6,8}}}} = 1,7814\)
Bài 1 : Tính giá trị của biểu thức:
A = \(2\sqrt{5}-\sqrt{45} + 2\sqrt{20}\)
B = \((\sqrt{18} - 1/2.\sqrt{32}+ 12\sqrt{2}):\sqrt{2}\)
C = \((\sqrt{12} + 2\sqrt{27} - 3\sqrt{3})\sqrt{3}\)
D = \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
GIÚP MÌNH NHÉ. THANKS!
\(A=2\sqrt{5}-\sqrt{45}+2\sqrt{20}=2\sqrt{5}-\sqrt{3^2.5}+2\sqrt{2^2.5}=2\sqrt{5}-3\sqrt{5}+4\sqrt{5}=3\sqrt{5}\)
\(B=\left(\sqrt{18}-\frac{1}{2}\cdot\sqrt{32}+12\sqrt{2}\right):\sqrt{2}=\left(3\sqrt{2}-\frac{1}{2}\cdot4\sqrt{2}+12\sqrt{2}\right):\sqrt{2}\)
\(=13\sqrt{2}:\sqrt{2}=13\)
\(C=\left(\sqrt{12}+2\sqrt{27}-3\sqrt{3}\right)\cdot\sqrt{3}=\left(2\sqrt{3}+6\sqrt{3}-3\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)
\(D=\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}=-\sqrt{5}+15\sqrt{2}\)
thực hiện phép tính
a, \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
b, \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}=\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(\sqrt{24}-3\right)^2}=\left|3-\sqrt{6}\right|+\left|\sqrt{24}-3\right|=3-\sqrt{6}+\sqrt{24}-3=2\sqrt{6}-\sqrt{6}=\sqrt{6}\)
\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}=-\dfrac{\sqrt{2}\left(\sqrt{6}-4\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}=\dfrac{-\sqrt{2}}{\sqrt{3}}-\dfrac{1}{\sqrt{6}}=\dfrac{-\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\).
\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=\dfrac{\left(\sqrt{2-\sqrt{3}}\right)^2+\left(\sqrt{2+\sqrt{3}}\right)^2}{\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}}=\dfrac{4}{1}=4\)
tính
A=\(\left(1-\sqrt{7}\right).\dfrac{\sqrt{7}+7}{2\sqrt{7}}\)
B=\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
C=\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
D=\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
E=\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)
b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)
c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
a,\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{6+2\sqrt{15}}\)
b, \(\sqrt{17-2\sqrt{72}}-\sqrt{19+2\sqrt{18}}\)
c, \(\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
d, \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
e, \(\sqrt{10-2\sqrt{21}}-\sqrt{9-2\sqrt{14}}\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
rút gọn biểu thức
A=2015+\(\sqrt{36}\)-\(\sqrt{25}\)
B=5\(\sqrt{8}\)+\(\sqrt{50}\)-2\(\sqrt{18}\)
C=\(\sqrt{27}\)-2\(\sqrt{12}\)-\(\sqrt{75}\)
D=\(\sqrt{12}\)+\(\sqrt{27}\)-\(\sqrt{48}\)
a: =2015+6-5=2016
b: =10căn 2+5căn 2-6căn 2=9căn 2
c: =3căn 3-4căn 3-5căn 3=-6căn 3
d: =2căn 3+3căn 3-4căn 3=căn 3
\(A=2015+6-5==2015+1=2016\)
\(B=5\sqrt{2^3}+\sqrt{5^2.2}-2\sqrt{3^2.2}\\ =10\sqrt{2}+5\sqrt{2}-6\sqrt{2}\\ =\left(10+5-6\right)\sqrt{2}=9\sqrt{2}\)
\(C=\sqrt{3^3}-2\sqrt{2^2.3}-\sqrt{5^2.3}\\ =3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\\ =\left(3-4-5\right)\sqrt{3}=-6\sqrt{3}\)
\(D=\sqrt{2^2.3}+\sqrt{3^3}-\sqrt{4^2.3}\\ =2\sqrt{3}+3\sqrt{3}-4\sqrt{3}\\ =\left(2+3-4\right)\sqrt{3}=\sqrt{3}\)
1) Rút gọn các biểu thức sau:
a) \(\sqrt[3]{27}\) - \(\sqrt[3]{-8}\) - \(\sqrt[3]{125}\)
b) \(\sqrt{20}\) - \(\sqrt{45}\) + 3\(\sqrt{18}\) + \(\sqrt{72}\)
c) 2\(\sqrt{5}\) + \(\sqrt{\left(1-\sqrt{5}\right)^2}\)
d) \(\dfrac{1}{\sqrt{3}+1}\) + \(\dfrac{1}{\sqrt{3}-1}\) - 2\(\sqrt{3}\)
e) \(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}\) - \(\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\) với a ≥ 0 , b≥0 , a ≠ b