Giá trị tan 30o bằng
A. \(\sqrt{3}\). B. \(\dfrac{\sqrt{3}}{2}\). C. \(\dfrac{1}{\sqrt{3}}\). D. 1.
Cho x ∈ (0;\(\dfrac{\Pi}{2}\)) và sinx=\(\dfrac{\sqrt{3}}{2}\) . Khi đó cos \(\dfrac{x}{2}\) bằng
A.\(\dfrac{\sqrt{3}}{2}\)
B.\(\dfrac{1}{2}\)
C. \(-\dfrac{1}{2}\)
D.\(-\dfrac{\sqrt{3}}{2}\)
\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow cosx>0;sinx>0;cos\dfrac{x}{2}>0\)
\(cos^2x+sin^2x=1\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{1}{2}\)
Có \(cosx=2cos^2\dfrac{x}{2}-1\)
\(\Leftrightarrow\dfrac{1}{2}=2cos^2x-1\)\(\Leftrightarrow cos^2\dfrac{x}{2}=\dfrac{3}{4}\Rightarrow cos\dfrac{x}{2}=\dfrac{\sqrt{3}}{2}\)
Ý A
Cho x ∈ (0;\(\dfrac{\Pi}{2}\)) và sinx=\(\dfrac{\sqrt{3}}{2}\) . Khi đó cos\(\dfrac{x}{2}\) bằng
A. \(\dfrac{\sqrt{3}}{2}\)
B. \(\dfrac{1}{2}\)
C. \(-\dfrac{1}{2}\)
D. \(-\dfrac{\sqrt{3}}{2}\)
Trình bày giúp mình nhé
\(\left\{{}\begin{matrix}x\in\left(0;\dfrac{\pi}{2}\right)\\sinx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow x=\dfrac{\pi}{3}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{\pi}{6}\Rightarrow cos\dfrac{x}{2}=cos\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}\)
Biết \(90^0< a< 180^o\); \(0^o< b< 90^o\) và \(cos\left(a-\dfrac{b}{2}\right)=-\dfrac{1}{4}\); \(sin\left(\dfrac{a}{2}-b\right)=\dfrac{1}{3}\). Giá trị biểu thức \(P=72cos\left(a+b\right)+49\) bằng
A. \(P=4\sqrt{30}\)
B. \(P=2\sqrt{30}\)
C. \(P=-4\sqrt{30}\)
D. \(P=-2\sqrt{30}\)
Lời giải:
Đặt $a-\frac{b}{2}=x; \frac{a}{2}-b=y$ thì $45^0< x< 180^0; -45^0< y< 90^0$
$\cos x=\frac{-1}{4}; 45^0< x< 180^0$ nên $\sin x=\frac{\sqrt{15}}{4}$
$\sin y=\frac{1}{3}; -45^0< y< 90^0$ nên $\cos y=\frac{2\sqrt{2}}{3}$
\(P=72\cos (2x-2y)+49=72[2\cos ^2(x-y)-1]+49=144\cos ^2(x-y)-23\)
\(=144(\cos x\cos y+\sin x\sin y)^2-23=-4\sqrt{30}\)
Đáp án C.
Nếu Sina = \(\dfrac{\sqrt{3}-1}{4}\) thì 2.Cos a có giá trị bằng
A. \(\dfrac{\sqrt{12+\sqrt{3}}}{2}\) B. \(\dfrac{\sqrt{12+2\sqrt{3}}}{2}\) C.\(\dfrac{\sqrt{6-\sqrt{3}}}{4}\) D.\(\dfrac{\sqrt{6+2\sqrt{3}}}{4}\)
\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\left(\dfrac{\sqrt{3}-1}{4}\right)^2}=\dfrac{\sqrt{12+2\sqrt{3}}}{4}\)
\(\Rightarrow2\cos\alpha=\dfrac{\sqrt{12+2\sqrt{3}}}{2}\). Chọn B.
Tính giá trị biểu thức
a,\(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
b,\(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
c,\(\tan^2\)\(40^o\)*\(sin^250^o-3+\left(1-sin40^o\right)\left(1+sin40^o\right)\)
a: \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}\)
\(=-5\sqrt{5}\)
b: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1-8\sqrt{3}\)
\(=-8\sqrt{3}+1\)
Tìm giá trị của x:
a) \(\sqrt{2x}< \dfrac{1}{3}\)
b) \(\sqrt{-3x+\dfrac{1}{2}}\ge5\)
c) \(\sqrt{-2x+1}>7\)
d) \(\sqrt{2x-1}\le\dfrac{3}{2}\)
a.ĐKXĐ: \(x\ge0\)
\(\sqrt{2x}< \dfrac{1}{3}\) \(\Leftrightarrow2x< \dfrac{1}{3}\Leftrightarrow6x< 1\Leftrightarrow x< \dfrac{1}{6}\)
b. ĐKXĐ: \(x\ge\dfrac{1}{6}\)
\(\sqrt{-3x+\dfrac{1}{2}}\ge5\Leftrightarrow-3x+\dfrac{1}{2}\ge25\Leftrightarrow x=-\dfrac{49}{6}\)
c. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{-2x+1}>7\) \(\Leftrightarrow-2x+1>49\Leftrightarrow x=-24\)
d. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}\le\dfrac{3}{2}\Leftrightarrow2x-1\le\dfrac{9}{4}\Leftrightarrow x=\dfrac{13}{8}\)
a: Ta có: \(\sqrt{2x}< \dfrac{1}{3}\)
\(\Leftrightarrow2x< \dfrac{1}{9}\)
\(\Leftrightarrow x< \dfrac{1}{18}\)
Kết hợp ĐKXĐ, ta được: \(0\le x< \dfrac{1}{18}\)
b: Ta có: \(\sqrt{-3x+\dfrac{1}{2}}\ge5\)
\(\Leftrightarrow-3x+\dfrac{1}{2}\ge25\)
\(\Leftrightarrow-3x\ge\dfrac{49}{2}\)
hay \(x\le-\dfrac{49}{6}\)
c: Ta có: \(\sqrt{-2x+1}>7\)
\(\Leftrightarrow-2x+1>49\)
\(\Leftrightarrow-2x>48\)
hay x<-24
giá trị của biểu thức \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\) bằng
A.\(\dfrac{1}{3}\) B.3 C.\(\sqrt{3}\) D.\(\dfrac{1}{\sqrt{3}}\)
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
A=\(\dfrac{x+2}{x-5}\) B=\(\dfrac{3x+1}{2-x}\) C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
\(A=\) \(\dfrac{x+2}{x-5}\)
\(=\dfrac{\left(x-5\right)+7}{x-5}\)
\(=1+\dfrac{7}{x-5}\)
để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5
⇒x-5∈\(\left(^+_-1,^+_-7\right)\)
Còn lại thì bạn tự tính nha
Cho ΔABC vuông tại A có đường cao AH.AB=2;AC=3CH.Diện tích ΔABC bằng
A.\(\dfrac{\sqrt{2}}{2}\) B.\(2\sqrt{2}\) C.\(\dfrac{3\sqrt{3}}{2}\) D.\(3\sqrt{3}\)
\(\Delta AHC\perp\) tại H ; \(AH^2=AC^2-CH^2=AC^2-\dfrac{1}{9}AC^2=\dfrac{8}{9}AC^2\)
\(\Delta ABC\perp\) tại A ; \(AH\perp BC\) tại H . Khi đó :
\(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}=\dfrac{9}{8AC^2}-\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{8AC^2}=\dfrac{1}{4}\Rightarrow AC^2=\dfrac{1}{2}\)
\(\Rightarrow AC=\dfrac{1}{\sqrt{2}}\)
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.2.\dfrac{1}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)
Chọn A
Tính giá trị biểu thức:
b) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
c) \(tan^240^o.sin^250^o-3+\left(1-sin40^o\right)\left(1+sin40^o\right)\)
b) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1-6\cdot\dfrac{4}{\sqrt{3}}\)
\(=1-8\sqrt{3}\)