\(A=\) \(\dfrac{x+2}{x-5}\)
\(=\dfrac{\left(x-5\right)+7}{x-5}\)
\(=1+\dfrac{7}{x-5}\)
để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5
⇒x-5∈\(\left(^+_-1,^+_-7\right)\)
Còn lại thì bạn tự tính nha
\(A=\) \(\dfrac{x+2}{x-5}\)
\(=\dfrac{\left(x-5\right)+7}{x-5}\)
\(=1+\dfrac{7}{x-5}\)
để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5
⇒x-5∈\(\left(^+_-1,^+_-7\right)\)
Còn lại thì bạn tự tính nha
Cho biểu thức :
A= \(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
a) Tìm điều kiện của x để biểu thức A có nghĩa .
b) Rg
c) Tìm giá trị của x để A <1
Cho biểu thức P=\(\left(\dfrac{x-6}{x+3\sqrt{x}}-\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{2\sqrt{x}-6}{x+1}\)
a Rút gọn biểu thức P
b Tìm các giá trị của x để P=1
Cho biểu thức :
A = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x-3}{\sqrt{x-9}}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{1}{1}\right)\)
a) Rút gọn
b) Tính A khi x = \(4-2\sqrt{3}\)
c) Tìm x để A < -1/2
d) Tìm Min của A
Cho biểu thức P=\(\left(\dfrac{x}{x-2\sqrt{x}}+\dfrac{x}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\)
a Rút gọn biểu thức P
b Tìm tất cả các giá trị của x để P>0
Cho biểu thức :
A= \(\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{x^2-2x+1}{2}\right)\)
a) Xác định x để A tồn tại .
b) Rút gọn .
c) Tìm x thuộc Z để A nhận giá trị nguyên .
d) Tìm x để A nhận giá trị âm .
Cho biểu thức P=\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\times\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)
a Rút gọn P
b Tìm x để \(\dfrac{P}{\sqrt{x}}>2\)
Chứng tỏ giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến:
\(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{x-1}{1-\sqrt{x}}\)
giải phương trình:
a, \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
b, \(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
c, \(x^2+3x+5=\left(x+3\right).\sqrt{x^2+5}\)
d, \(\sqrt{x^4+x^2+1}+\left(x^2+1\right).\sqrt{3}=3x\sqrt{3}\)
Cho B=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)
a Tìm điều kiện của x để B xác định
b Hãy rút gọn biểu thức B