Câu a : ĐKXĐ : \(x\ge0\) và \(x\ne4\)
Câu b : \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-4-5-\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
Câu c :
\(A< 1\) \(\Leftrightarrow\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}< 1\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)< \left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow x-\sqrt{x}-6< x+\sqrt{x}-6\)
\(\Leftrightarrow-2\sqrt{x}< 0\) ( Luôn đúng với mọi x khi \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\))
Vậy các giá của x để A < 1 là \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)