a) Ta có
\(P=\left(\dfrac{x}{x-2\sqrt{x}}+\dfrac{x}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\) (ĐKXĐ : \(x\ne\pm4;x\ne0\) )
\(P=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}\)
\(P=\dfrac{x+x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\sqrt{x}}=\sqrt{x}-2\)
b) \(P>0\)
\(\Rightarrow\sqrt{x}-2>0\)
\(\Rightarrow x>4\)