Mặt cắt đứng của khung thép có dạng tam giác cân ABC với \(\widehat{B}\) = 23°, AB = 4 m (Hình 33). Tính độ dài đoạn thẳng BC (làm tròn kết quả đến hàng phần mười của mét).
Cho tam giác ABC có \(AB = 3,5;\;AC = 7,5;\;\widehat A = {135^o}.\) Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).
Áp dụng định lí cosin trong tam giác ABC ta có:
\(B{C^2} = A{C^2} + A{B^2} - 2AC.AB.\cos A\)
\(\begin{array}{l} \Leftrightarrow B{C^2} = 7,{5^2} + 3,{5^2} - 2.7,5.3,5.\cos {135^o}\\ \Leftrightarrow B{C^2} \approx 105,6\\ \Leftrightarrow BC \approx 10,3\end{array}\)
Áp dụng định lí sin trong tam giác ABC ta có: \(\frac{{BC}}{{\sin A}} = 2R\)
\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{{10,3}}{{2.\sin {{135}^o}}} \approx 7,3\)
Cho tam giác ABC có \(AB = 3,AC = 4,\widehat {BAC} = {120^o}.\) Tính (làm tròn kết quả đến hàng đơn vị):
a) Độ dài cạnh BC và độ lớn góc B.
b) Bán kính đường tròn ngoại tiếp
c) Diện tích của tam giác
d) Độ dài đường cao xuất phát từ A
e) \(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {BC} \) với M là trung điểm của BC.
a) Áp dụng định lí cosin trong tam giác ABC, ta có:
\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {3^2} + {4^2} - 2.3.4.\cos {120^o}\\ \Leftrightarrow B{C^2} = 37\\ \Leftrightarrow BC \approx 6\end{array}\)
Áp dụng định lí sin trong tam giác ABC, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = 2R\\ \Rightarrow \sin B = \frac{{AC.\sin A}}{{BC}} = \frac{{4.\sin {{120}^o}}}{6} = \frac{{\sqrt 3 }}{3}\\ \Leftrightarrow \widehat B \approx {35^o}\end{array}\)
b) \(R = \frac{{BC}}{{2.\sin A}} = \frac{6}{{2.\sin {{120}^o}}} = 2\sqrt 3 \)
c) Diện tích tam giác ABC: \(S = \frac{1}{2}4.3.\sin {120^o} = 3\sqrt 3 .\)
d) Gọi H là chân đường cao hạ từ đỉnh A.
Ta có: \(S = \frac{1}{2}AH.BC\)
\( \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{2.3\sqrt 3 }}{6} = \sqrt 3 \)
e) \(\overrightarrow {AB} .\overrightarrow {AC} = 3.4.\cos (\widehat {BAC}) = 12.\cos {120^o} = - 6.\)
Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \) (do M là trung điểm BC)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} )\)
\(\begin{array}{l} \Rightarrow \overrightarrow {AM} .\overrightarrow {BC} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} )(\overrightarrow {AC} - \overrightarrow {AB} )\\ = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} - {{\overrightarrow {AB} }^2}} \right) = \frac{1}{2}\left( {A{C^2} - A{B^2}} \right)\\ = \frac{1}{2}\left( {{4^2} - {3^2}} \right) = \frac{7}{2}.\end{array}\)
Cho tam giác ABC vuông tại A có AB = 6cm, AC =8cm. Đường cao AH( H thuộc BC), tia phân giác góc A cắt BC tại D
a) Chứng minh tam giác ABC đồng dạng với tam giác AHC
b) Chứng minh AC^2=BC.HC
c) Tính độ dài các đoạn thẳng BC, DB, DC( kết quả làm tròn đến chữ số thập phân số 2)
Cho tam giác ABC vuông tại A Biết AB = 3 cm, BC = 5 cm
a, Giải tam giác vuông ABC (số đo góc làm tròn đến độ)
b, Từ B kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AC tại D. Tính độ dài các đoạn thẳng AD, BD
c, Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh hai tam giác BEF và BDC đồng dạng
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(2;4), B(-1;1), C(-8; 2).
a) Tính số đo góc ABC (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
b) Tính chu vi của tam giác ABC.
c) Tìm toạ độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.
a) Ta có: \(\overrightarrow {BC} = \left( { - 7;1} \right),\overrightarrow {BA} = \left( {3;3} \right)\)
\(\cos \widehat {ABC} = \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \frac{{\left( { - 7} \right).3 + 1.3}}{{\sqrt {{{\left( { - 7} \right)}^2} + {1^2}} .\sqrt {{3^2} + {3^2}} }} = - \frac{3}{5} \Rightarrow \widehat {ABC} \approx {126^o}\)
b) Ta có: \(\overrightarrow {BC} = \left( { - 7;1} \right),\overrightarrow {BA} = \left( {3;3} \right),\overrightarrow {AC} = \left( { - 10; - 2} \right)\)
Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {BA} } \right| = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt {104} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}} = \sqrt {50} \end{array}\)
Vậy chu vi tam giác ABC là: \({P_{ABC}} = 2\sqrt {26} + 8\sqrt 2 \)
c) Để diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM thì M phải là trung điểm BC.
Vậy tọa độ điểm M là: \(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = \frac{{ - 9}}{2}\\\frac{{{y_B} + {y_C}}}{2} = \frac{3}{2}\end{array} \right.\). Vậy \(M\left( {\frac{{ - 9}}{2};\frac{3}{2}} \right)\)
Bài 1 : Cho tam giác ABC có 3 cạnh AB, AC,BC lần lượt là 2cm ; 3cm ; 4cm. Kẻ đường cao AH : Tính :
a, Độ dài các đoạn thẳng BH, HC, AH
b, Độ dài đường cao tương ứng với cạnh AB , AC
c, Số đo các góc A, B, C của tam giác ABC ( làm tròn đến phút )
Bài 2 : Cho tam giác ABC có góc A = 45 độ , góc B = 30 độ và AB = 5cm . Kẻ đường cao AH . Tính :
a,Độ dài các đoạn thẳng AH, BH, HC
b, Tính diện tích tam giác ABC ) làm tròn kết quả đến hàng % )
Bài 3 : Cho tam giác ABC vuông tại A . Đường cao AH = 6cm ; \(\frac{HB}{HC}=\frac{4}{9}\) ;tính các cạnh của tam giác ABC
Mọi người giúp em giải 3 bài này với
thứ 6 em kiểm tra rồi
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
Cho tam giác ABC vuông tại A có AB = 5cm, AC = 12cm, đường cao AH(HBC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.
a) Tính độ dài BC, AF, FC. (Làm tròn kết quả đến chữ số thập phân thứ nhất )
b) Chứng minh: rABF đồng dạng với rHBE
c) Chứng minh: rAEF cân
d) Chứng minh: AB.FC = BC.AE
Một khuôn viên dạng nửa hình tròn, trên đó người ta thiết kế 2m, độ dài trục bé bằng 1m, chiều dài (mặt trong của thùng) bằng 3,5m.Thùng được đặt sao cho trục bé nằm theo phương thẳng đứng (như hình bên). Biết chiều cao của dầu hiện có trong thùng (tính từ điểm thấp nhất của đáy thùng đến mặt dầu) là 0,75m. Tính thể tích của dầu có trong thùng (Kết quả làm tròn đến hàng phần trăm).
A. V = 4 , 42 m 3
B. V = 3 , 23 m 3
C. V = 1 , 26 m 3
D. V = 7 , 08 m 3
Tam giác ABC có \(\widehat{A}=45^o\),\(\widehat{B}=30^o\)và AB = 5cm . Kẻ đường cao CH . Tính :
a) Độ dài các đoạn thẳng AH , BH , HC
b) Diện tích tam giác ABC
( làm tròn kq đến hàng phần trăm )
Câu 9: Chia đều 1 thanh gỗ dài 8,32m thành 4 đoạn thẳng bằng nhau. Tính độ dài mỗi đoạn gỗ ( Làm tròn kết quả đến hàng phần mười)
A.2m B.2,18m C.2,1m D.2,08m