Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hạ anh
Xem chi tiết
Ngọc Quang Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 9 2021 lúc 12:05

Vì A,B thuộc (P) nên \(\left\{{}\begin{matrix}y_A=2x_A^2=2\\y_B=2x_B^2=8\end{matrix}\right.\)

\(\Rightarrow A\left(1;2\right)\\ B\left(-2;8\right)\)

 

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 12:45

Gọi (d): y=ax+b

Vì (d) đi qua hai điểm A(1;2) và B(-2;8) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\-2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-7\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{7}{3}\\b=1-a=1+\dfrac{7}{3}=\dfrac{10}{3}\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 8 2017 lúc 13:44

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2017 lúc 10:22

Đáp án A

Trần Thị Kim Ngân
Xem chi tiết
Hoàng Thanh Tuấn
1 tháng 6 2017 lúc 21:43

Bài này sử dựng định lý viet để chứng minh:

Gọi phương trình đường thẳng (d) có hệ số góc a có dạng : \(y=ax+b\left(a\ne0\right)\)\(M\left(1,2\right)\)thuộc (d) nên : \(2=a+b\Rightarrow b=2-a\left(1\right)\). Xét phương trình hoành độ giao điểm có : \(x^2=ax+b\left(2\right)\)thế 1 vào 2 có \(x^2=ax+2-a\Leftrightarrow x^2-ax-\left(2-a\right)=0\)phương trình có : \(\Delta=a^2+4\left(2-a\right)=a^2-4a+8\)\(\Rightarrow\Delta=\left(a^2-4a+4\right)+4=\left(a-2\right)^2+4\ge4\forall a\) nên phương trình luôn có hai nghiệm phân biệt với mọi giá tri của \(a\ne0\)Khi đó parabol cắt d tại hai điểm A,B  với A,B có hoành độ lần lượt là \(x_A,x_B\) theo vi ét ta có : \(\hept{\begin{cases}x_A+x_B=a\\x_Ax_B=-\left(2-a\right)\end{cases}}\)ta xét \(x_A+x_B-x_Ax_B=a+\left(2-a\right)=2\left(dpcm\right)\)
Trung Hiếu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 8 2018 lúc 17:20

Pham Thanh Phú
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2019 lúc 10:04

 

a) Vì A, B thuộc (P) nên:

x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2  ,  B ( 2 ; 2 )

b) Gọi phương trình đường thẳng (d) là y = ax + b.

Ta có hệ phương trình:

− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1

Vậy (d):  y = 1 2 x + 1 .

c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)

=>  OC = 1 và OD = 2

Gọi h là khoảng cách từ O tới (d).

Áp dụng hệ thức về cạnh và đường cao vào  vuông OCD, ta có:

1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5

Vậy khoảng cách từ gốc O tới (d) là  2 5 5 .

 

nguyentrunghieua
Xem chi tiết