Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ANH THƯ TRƯƠNG LÝ
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2023 lúc 21:58

góc F=90-30=60 độ

Xét ΔDEF vuông tại D có sin E=DF/EF

=>DF/20=1/2

=>DF=10cm

=>DE=10*căn 3(cm)

kieuyenhai
Xem chi tiết
Vũ Hương Hải Vi
Xem chi tiết
Edogawa Conan
22 tháng 11 2019 lúc 15:00

A B C D E F

Xét t/giác DEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\) (tổng 3 góc của 1 t/giác)

=> \(\widehat{D}=180^0-\widehat{E}-\widehat{F}=180^0-70^0-60^0=50^0\)

Xét t/giác ABC và t/giác DEF

có: AB = DE (gt)

   AC = DF (gt)

 \(\widehat{A}=\widehat{D}=50^0\)

=> t/giác ABC = t/giác DEF (c.g.c)

Khách vãng lai đã xóa
CharNU
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Lê Kiều Trinh
17 tháng 11 2019 lúc 13:07

mình cần gấp ạ 

Khách vãng lai đã xóa
Trai Họ Phạm
Xem chi tiết
Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 20:58

a) Ta có: ΔDEF vuông tại D(gt)

nên \(\widehat{F}+\widehat{E}=90^0\)

hay \(\widehat{F}=30^0\)

Xét ΔDEF vuông tại D có 

\(DF=DE\cdot\tan60^0\)

\(=12\sqrt{3}\left(cm\right)\)

Xét ΔDEF vuông tại D có 

\(\sin\widehat{DFE}=\dfrac{DE}{FE}\)

\(\Leftrightarrow FE=12:\dfrac{1}{2}=24\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔDEF vuông tại D có 

\(FE^2=DE^2+DF^2\)

\(\Leftrightarrow FE^2=8^2+15^2=289\)

hay FE=17(cm)

Xét ΔDEF vuông tại D có

\(\sin\widehat{DFE}=\dfrac{DE}{EF}=\dfrac{15}{17}\)

\(\Leftrightarrow\widehat{DFE}\simeq62^0\)

\(\Leftrightarrow\widehat{DEF}=28^0\)

Huyền Anh
Xem chi tiết
❤️ Jackson Paker ❤️
3 tháng 7 2021 lúc 10:48

\(\Delta DEF\) cho ta \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)

                   \(\Rightarrow\widehat{D}=180^0-\left(\widehat{E}+\widehat{F}\right)\)

                   \(\Rightarrow\widehat{D}=180^0-\left(70^0+60^0\right)=180^0-130^0=50^0\)

\(Xét\) \(\Delta ABCvà\Delta DEFcó\)

\(\widehat{A}=\widehat{D}\left(=50^0\right)\)

AB=DE

AC=DF

\(\Rightarrow\Delta ABC=\Delta DEF\left(c-g-c\right)\)

Vậy \(\Delta ABC=\Delta DEF\)

 

➻❥Băng Băng ツ
Xem chi tiết
Nguyễn Trung Thành
19 tháng 4 2020 lúc 20:28

a, 2 tam giác đồng dạng 

CM:

xét tam giác ta có:    \(2x+3x+4x=56\)(\(x\)là hệ số sao cho \(2x;3x;4x\)là ba cạnh của tam giác ABC)

=) \(x=6\)

tỉ lệ cạnh thì cậu chứng minh đc 2 tam giác đồng dạng nhé

b,vì hai tam đồng dạng nên 

\(\widehat{ABC}=\widehat{DEF}=45^O\)

\(\widehat{BAC}=\widehat{EDF}=105^O\)

tổng 3 góc trong tam giác =180o

thì tính đc \(\widehat{ACB}=\widehat{DFE}=30^O\)

Khách vãng lai đã xóa
Nguyễn Trung Thành
19 tháng 4 2020 lúc 20:35

sao khi ra x=6 nhân vào 2x=2.6=12=AB

3x=3.6=18=AC

BC=4x=4.6=24

tỉ lệ cạnh \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)

hay \(\frac{12}{3}=\frac{18}{4,5}=\frac{24}{6}\)

Khách vãng lai đã xóa