Tính:
\(\sqrt{\left(a+5\right)^2}\); \(\sqrt{\left(9=a\right)^2};\sqrt{\left(11+6\right)\sqrt{2}};\sqrt{a^2+3+2a.\sqrt{2}}\)
Tính
a) \(\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
b) \(\left(2\sqrt{3}-\sqrt{5}\right)\cdot\left(2\sqrt{3}+\sqrt{5}\right)\)
a) \(\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=2^2-\left(\sqrt{3}\right)^2\)
\(=4-3=1\)
b) \(\left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right)\)
\(=\left(2\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2\)
\(=12-5=7\)
a) (2 - √3)(2 + √3)
= 2² - (√3)²
= 4 - 3
= 1
b) (2√3 - √5)(2√3 + √5)
= (2√3)² - (√5)²
= 12 - 5
= 7
Tính:
\(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(C=\sqrt{\left(3-\sqrt{2}^2\right)}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(D=\sqrt{\left(5-1\right)^2}+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(E=\left(3+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3-\dfrac{5+\sqrt{5}}{\sqrt{5}-1}\right)\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(G=\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\)
\(H=\dfrac{10}{\sqrt{3}-1}-\dfrac{55}{2\sqrt{3}+1}\)
help
a) Ta có: \(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{5}-2\sqrt{5}+\sqrt{5}-1\)
\(=\sqrt{5}-1\)
b) Ta có: \(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(=8\sqrt{2}+10\sqrt{2}-16\sqrt{2}\)
\(=2\sqrt{2}\)
B1: tính : a, \(\sqrt{400.0,81}\)
b, \(\sqrt{\dfrac{5}{27}.\dfrac{3}{20}}\)
c, \(\sqrt{\left(-5\right)^2.3^2}\)
d, \(\sqrt{\left(2-\sqrt{5}\right)^2.\left(2+\sqrt{5}\right)^2}\)
a)\(\sqrt{400.0,81}=\sqrt{4.81}=\sqrt{2^2.9^2}=2.9=18\)
b)\(\sqrt{\dfrac{5}{27}.\dfrac{3}{20}}=\sqrt{\dfrac{5}{3^3}.\dfrac{3}{2^2.5}}=\sqrt{\dfrac{1}{3^2.2^2}}=\dfrac{1}{3.2}=\dfrac{1}{6}\)
c)\(\sqrt{\left(-5\right)^2.3^2}=\sqrt{5^2.3^2}=5.3=15\)
d)\(\sqrt{\left(2-\sqrt{5}\right)^2\left(2+\sqrt{5}\right)^2}=\sqrt{\left[2^2-\left(\sqrt{5}\right)^2\right]^2}=\sqrt{\left(-1\right)^2}=1\)
Tính giá trị của biểu thức:
a, A = \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)}^2\)
b, B = \(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
`A=sqrt{(2-sqrt5)^2}+sqrt{(2sqrt2-sqrt5)^2}`
`A=|2-sqrt5|+|2sqrt2-sqrt5|`
`A=\sqrt5-2+2sqrt2-sqrt5`
`A=2sqrt2-2`
`b)B=sqrt{(sqrt7-2sqrt2)^2}+sqrt{(3-2sqrt2)^2}`
`B=|sqrt7-2sqrt2|+|3-2sqrt2|`
`A=2sqrt2-sqrt7+3-2sqrt2`
`A=3-sqrt7`
a,=> A=\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\sqrt{2}\right)^2}=2-\sqrt{5}+\sqrt{5}-2\sqrt{2}=2-2\sqrt{2}\)
b tương tự
a) Ta có: \(A=\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\)
\(=\sqrt{2}\)
b) Ta có: \(B=\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}-\sqrt{7}+3-2\sqrt{2}\)
\(=3-\sqrt{7}\)
Tính:
\(A=\sqrt{27}-2\sqrt{48}+3\sqrt{75}\)
\(B=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(C=\sqrt{\left(2\sqrt{3}+1\right)^2}+\sqrt{\left(2\sqrt{3}-5\right)^2}\)
\(D=\sqrt{9-4\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(E=\dfrac{4}{\sqrt{5}-2}-\dfrac{32}{\sqrt{5}+1}\)
\(M=\dfrac{10}{3\sqrt{2}-4}+\dfrac{28}{3\sqrt{2}+2}\)
please help ;-;
Tính:
\(A=2\sqrt{\left(-3\right)^6}+2\sqrt{\left(-2\right)^4}-4\sqrt{\left(-2\right)^6}\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}-5\right)^2}\)
\(E=\sqrt{17^2-8^2}-\sqrt{3^2+4^2}\)
\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)
\(=54+8-32=30\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)
\(=5-2\sqrt{2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)
\(=2-2\sqrt{3}\)
\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)
\(=2\sqrt{6}\)
\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)
`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`
Giúp với
1) Thu gọn A
\(A=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\)
2) Tính A biết \(x=\left(\dfrac{2-\sqrt{5}}{2+\sqrt{5}}-\dfrac{2+\sqrt{5}}{2-\sqrt{5}}\right):\sqrt{20}\)
\(A=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(x=\dfrac{9-4\sqrt{5}-9-4\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}:2\sqrt{5}=\dfrac{-8\sqrt{5}}{-2\sqrt{5}}=4\\ \Leftrightarrow\sqrt{x}=2\\ \Leftrightarrow A=\dfrac{2-1}{2+2}=\dfrac{1}{4}\)
\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]X\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}\) : \(\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\)
b, tìm x, y, z thoả mãn đẳng thức
\(\sqrt{\left(x-\sqrt{2}\right)^2}\) + \(\sqrt{\left(y+\sqrt{2}\right)^2}\) + |x + y + z| = 0
\(a,\cdot\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\\ =\left[\left(8:2,4\right)\cdot\left(5,25:7\right)\right]:\left[\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)\right]\\ =\left(\dfrac{10}{3}\cdot\dfrac{3}{4}\right):\left(3:\dfrac{9}{2}\right)\\ =\dfrac{5}{2}:\dfrac{2}{3}\\ =\dfrac{15}{4}\)
a: \(\dfrac{\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}^2\right)\right]\right\}}{\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}}\)
\(=\dfrac{\dfrac{8}{2,4}\cdot\dfrac{5,25}{7}}{\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)}\)
\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{3}{4}}{3:\left(4\cdot\dfrac{9}{8}\right)}\)
\(=\dfrac{\dfrac{10}{4}}{3:\left(\dfrac{9}{2}\right)}=\dfrac{5}{2}:\left(3\cdot\dfrac{2}{9}\right)=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{15}{4}\)
b: \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|>=0\forall x\)
\(\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|>=0\forall y\)
\(\left|x+y+z\right|>=0\forall x,y,z\)
Do đó: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
Tính:
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2\)
b) \(\left[\sqrt{4^2}\right]+\sqrt{\left(-4\right)^2}.\left(\sqrt{5}\right)^2-\sqrt{5^{-2}}\)
c) \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2\)
HỘ MK BÀI NÀY NHA MỌI NGƯỜI
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2=\sqrt{25}+\sqrt{25}-\sqrt{9}-\sqrt{9}\)
\(=5+5-3-3\)
\(=4\)
c) \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2=\sqrt{100}+10.5\)
\(=10+10.5\)
\(=10+50\)
\(=60\)
Học tốt nha^^
a, \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2=5+5-3-3-7=-4\)
b, \(\left[\sqrt{4^2}\right]+\sqrt{\left(-4\right)^2}.\left(\sqrt{5}\right)^2-\sqrt{5^{-2}}\)
\(=4+4.5-\sqrt{\frac{1}{25}}=4+20-\frac{1}{5}=\frac{119}{5}\)
c, \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2=10+10.5=10+50=60\)
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
1) \(A=2\sqrt{5}-6\sqrt{2}+3\sqrt{5}=5\sqrt{5}-6\sqrt{2}\)
2) \(B=\dfrac{30\left(\sqrt{7}+1\right)}{7-1}+\dfrac{15\left(\sqrt{7}-2\right)}{7-4}=5\sqrt{7}+5+5\sqrt{7}-10=-5+10\sqrt{7}\)
3) \(C=\left(3-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(3+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)=9-5=4\)
4) \(D=3-\sqrt{2}+1-\sqrt{2}=4-2\sqrt{2}\)