I = cos10 . cos20 . cos30 ..... cos70. cos80
1. Biểu thức A = \(\frac{1}{2\sin10}-2\sin70\) có gái trị bằng bao nhiêu ?
2. Tích số cos10.cos30.cos50.cos70 = ?
3. Tích số \(cos\frac{\pi}{7}.cos\frac{4\pi}{7}.cos\frac{5\pi}{7}\) = ?
4. Tính A = \(\frac{tan30+tan40+tan50+tan60}{cos20}\)=?
5.Rút gọn biểu thức : cos54.cos4 - cos36.cos86
=> P/S : (Làm theo công thức lượng giác lớp 10 ở tất cả các câu)
Câu 3:
\(A=cos\frac{\pi}{7}.cos\frac{5\pi}{7}.cos\frac{4\pi}{7}=cos\frac{\pi}{7}.cos\left(\pi-\frac{2\pi}{7}\right).cos\frac{4\pi}{7}\)
\(A=-cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.2sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.sin\frac{2\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{4}sin\frac{4\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{8}sin\frac{8\pi}{7}=-\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow A=\frac{1}{8}\)
Câu 4:
Đầu tiên ta chứng minh công thức:
\(tana+tanb=\frac{sina}{cosa}+\frac{sinb}{cosb}=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)
Áp dụng để biến đổi tử số:
\(tan30+tan60+tan40+tan50=\frac{sin90}{cos30.cos60}+\frac{sin90}{cos40.cos50}=\frac{1}{cos30.cos60}+\frac{1}{cos40.cos50}\)
\(=\frac{2}{cos90+cos30}+\frac{2}{cos90+cos10}=\frac{2}{cos30}+\frac{2}{cos10}=2\left(\frac{cos30+cos10}{cos30.cos10}\right)\)
\(=2\left(\frac{2cos20.cos10}{cos30.cos10}\right)=\frac{4.cos20}{cos30}=\frac{8\sqrt{3}}{3}.cos20\)
\(\Rightarrow A=\frac{\frac{8\sqrt{3}}{3}cos20}{cos20}=\frac{8\sqrt{3}}{3}\)
Câu 5:
\(cos54.cos4-cos36.cos86=cos54.cos4-cos\left(90-54\right).cos\left(90-4\right)\)
\(=cos54.cos4-sin54.sin4=cos\left(54+4\right)=cos58\)
Câu 1:
\(A=\frac{1}{2sin10}-2sin70=\frac{1-4sin10.sin70}{2sin10}=\frac{1+2\left(cos80-cos60\right)}{2sin10}\)
\(=\frac{1+2cos80-1}{2sin10}=\frac{2cos80}{2sin10}=\frac{sin10}{sin10}=1\)
Câu 2:
\(cos10.cos30.cos50.cos70=cos10.cos30.\frac{1}{2}\left(cos120+cos20\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+cos10.cos20\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}\left(cos30+cos10\right)\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}cos30+\frac{1}{2}cos10\right)\)
\(=\frac{1}{2}.\frac{\sqrt{3}}{2}\left(-\frac{1}{2}cos10+\frac{1}{2}\frac{\sqrt{3}}{2}+\frac{1}{2}cos10\right)\)
\(=\frac{3}{16}\)
Tính tổng
S = cos100 + cos300 +...+ cos1500 + cos1700
S= (cos100+cos1700) + (cos300+cos1500) + (cos500+cos1300)+(cos700+1100)+cos900
=0
Mn giúp mk với
a) cos20°×cos40°×cos60°×cos80°
b) B= sin10°×sin50°×sin70°
\(A=cos20.cos40.cos60.cos80\)
\(A.sin20=sin20.cos20.cos40.cos60.cos80\)
\(Asin20=\frac{1}{2}sin40.cos40.cos80.cos60\)
\(Asin20=\frac{1}{4}sin80.cos80.cos60\)
\(Asin20=\frac{1}{8}sin160.cos60\)
\(Asin20=\frac{1}{8}sin20.cos60\)
\(A=\frac{1}{8}cos60=\frac{1}{16}\)
\(B=sin10.cos40.cos20\)
\(Bcos10=sin10.cos10.cos20.cos40\)
\(Bcos10=\frac{1}{2}sin20.cos20.cos40\)
\(Bcos10=\frac{1}{4}sin40.cos40\)
\(Bcos10=\frac{1}{8}sin80=\frac{1}{8}cos10\)
\(B=\frac{1}{8}\)
Không dùng máy tính hoặc bảng số , hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần
a) \(\cos30^o,\sin30^o,\sin50^o,\cos80^o,\cos38^o\)
b) \(\cot20^o,\sin49^o,\tan75^o,\tan63^o,\cos30^o,\cot11^o\)
a) Ta có: sin30=cos60, sin50=cos40
Mà cos30 < cos38 < cos40 < cos60 < cos80
Nên cos30 < cos38 < sin50 < sin30 < cos80
b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)
và: sin49=cos41 => cos30 < sin49 (2)
Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)
Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63
TA CÓ \(\sin30\)= \(\cos60\)
\(\sin50=\cos40\)
---->> \(\cos30< \cos38< \cos40< \cos60< \cos80\)
------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)
Cái kia làm tương tự nhoa
Bạn xin 1 cái k
Sắp xếp theo thứ tự tăng dần các tỉ số lượng giác sau:
a) \(\sin15,\cos80,\tan25,\cot75\)
b) \(\sin10,\cos10,\tan45,\cot33\)
Giúp mình nhé, mình đang cần gấp
bạn phải ns rõ là bài này có được dùng máy tính hay ko .
mình làm theo cách ko bấm máy nhé
Ta có : khi góc \(\alpha\)tăng từ 0 -> 90 độ thì : \(\hept{\begin{cases}\sin\alpha\\\tan\alpha\end{cases}}\)tăng ; \(\hept{\begin{cases}\cos\alpha\\\cot\alpha\end{cases}}\)tăng
a) \(\sin15^o=\cos75^o>\cos80^o\) ;\(\tan25^o=\cot65^o>\cot75^o\)
\(\cot75^o=\tan15^o=\frac{\sin15^o}{\cos15^o}>\sin15^o\)( vì \(0< \cos15^o< 1\) )
tóm lại : \(\cos80^o< \sin15^o< \cot75^o< \tan25^o\)
b) tương tự
Câu 1: Chứng minh
a) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\)
b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)
Câu 2: Tính
a) cos10.cos50.cos70
b) sin10.sin50.sin70
c) cos20.cos40.cos60.cos60
d) sin20.sin40.sin60.sin80
Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh B
Câu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm của AC là I(-2;1). Viết phương trình cạnh AC
Câu 5: Cho các số dương x,y thỏa mãn x+ y = \(\dfrac{1}{2}\). Tìm giá trị nhỏ nhất của
P=\(\dfrac{1}{x}+\dfrac{1}{y}\)
Câu 6: Cho số thực x thỏa mãn x>4. Tìm giá trị nhỏ nhất của \(Q=9x+\dfrac{1}{x-4}\)
Câu 7: Cho số dương x thỏa mãn 0 ≤ x ≤ 7. Tìm giá trị lớn nhất của \(Q=9x\left(7-x\right)\)
Câu 8: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 = 0 và đường thẳng d: x + y + 1 = 0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.
Câu 9: Trong mặt phẳng Oxy cho điểm A(-3;4) và đường thẳng d: 3x + 4y + 18 = 0. Viết phương trình đường tròn tâm A và cắt đường thẳng d theo dây cung có độ dài bằng 24
Câu 10: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 =0 và đường thẳng d: x + y + 1=0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung AB sao cho tam giác ABI đều (I là tâm của (C))
Giúp em với ạ <3 Được câu nào hay câu đó :( tsau em thi rùi
Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{x}+\dfrac{1}{y}\)
Giải:
\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)
--> P nhỏ nhất khi \(xy\) lớn nhất
Ta có:
\(x^2+y^2\ge2xy\) ( BĐT AM-GM )
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)
Vậy \(Min_P=8\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)
1. Tính giá trị biểu thức
S= cos70 +cos50 -cos10
2. Cho a+b=π/4. Cm
(1+tanα).(1+tanβ) =2
3. Tính giá trị biểu thức
P= sin^2 10¤ +sin^2 50¤ +sin^2 70¤
1.
\(cos70+cos50=2cos\dfrac{70+50}{2}.cos\dfrac{70-50}{2}=2.cos60.cos10=2.\dfrac{1}{2}cos10\)
\(cos70+cos50-cos10=0\)
2.\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana.tanb}=1\Rightarrow tana+tanb+tana.tanb+1=2\Leftrightarrow\left(1+tana\right)\left(1+tanb\right)=2\)
Khong dùng máy tính cầm tay, hãy tính:
a) A = \(\dfrac{\sin33}{\cos57}+\dfrac{\tan32}{\cot58}-2\left(\sin20\cdot\cos70+\cos20\cdot\sin70\right)\)
b) B = \(\dfrac{\sin^215+\sin^275-\sin^212-\sin^218}{\cos^213+\cos^277+\cos^21+\cos^289}+\dfrac{2\cdot\tan55}{\cot35}\)
a) ta có : \(A=\dfrac{sin33}{cos57}+\dfrac{tan32}{cot58}-2\left(sin20.cos70+cos20.sin70\right)\)
\(\Leftrightarrow A=\dfrac{sin33}{cos\left(90-33\right)}+\dfrac{tan32}{cot\left(90-32\right)}-2\left(sin20.cos\left(90-20\right)+cos20.sin\left(90-20\right)\right)\)
\(\Leftrightarrow A=\dfrac{sin33}{sin33}+\dfrac{tan32}{tan32}-2\left(sin20.sin20+cos20.cos20\right)\)\(\Leftrightarrow A=1+1-2\left(sin^220+cos^220\right)=1+1-2=0\)
b) sữa đề chút nha
ta có : \(B=\dfrac{sin^215+sin^275-sin^212-sin^278}{cos^213+cos^277+cos^21+cos^289}+\dfrac{2tan55}{cot35}\)
\(\Leftrightarrow B=\dfrac{sin^215+sin^2\left(90-15\right)-sin^212-sin^2\left(90-12\right)}{cos^213+cos^2\left(90-13\right)+cos^21+cos^2\left(90-1\right)}+\dfrac{2tan\left(90-35\right)}{cot35}\)
\(\Leftrightarrow B=\dfrac{sin^215+cos^215-sin^212-cos^212}{cos^213+sin^213+cos^21+sin^21}+\dfrac{2cot35}{cot35}\) \(\Leftrightarrow B=\dfrac{sin^215+cos^215-\left(sin^212+cos^212\right)}{cos^213+sin^213+cos^21+sin^21}+\dfrac{2cot35}{cot35}\)\(\Leftrightarrow B=\dfrac{1-1}{cos^213+sin^213+cos^21+sin^21}+2=0+2=2\)
rút gọn và tính giá trị các biểu thức ( k dùng máy tính)
A=\(\cos10^0+\cos40^0+\cos70^0+...+\cos170^0\)
B= \(\sin5^0+\sin10^0+\sin15^0+....+\sin360^0\)
C= \(\cos^22^0+\cos^24^0+\cos^26^0+...+\cos^288^0\)
\(A=cos10+cos170+cos40+cos140+cos70+cos110\)
\(A=cos10+cos\left(180-10\right)+cos40+cos\left(180-40\right)+cos70+cos\left(180-70\right)\)
\(A=cos10-cos10+cos40-cos40+cos70-cos70\)
\(A=0\)
\(B=sin5+sin355+sin10+sin350+...+sin175+sin185+sin360\)
\(B=sin5+sin\left(360-5\right)+sin10+sin\left(360-10\right)+...+sin175+sin\left(360-175\right)+sin360\)
\(B=sin5-sin5+sin10-sin10+...+sin175-sin175+sin360\)
\(B=sin360=0\)
\(C=cos^22+cos^288+cos^24+cos^284+...+cos^244+cos^246\)
\(C=cos^22+cos^2\left(90-2\right)+cos^24+cos^2\left(90-4\right)+...+cos^244+cos^2\left(90-44\right)\)
\(C=cos^22+sin^22+cos^24+sin^24+...+cos^244+sin^244\)
\(C=1+1+...+1\) (có \(\frac{44-2}{2}+1=22\) số 1)
\(\Rightarrow C=22\)
Tính giá trị của biểu thức
A=\(\sin^210^0+\sin^220^0+\sin^230^0+...+\sin^280^0+2013\)
B=\(\cos^21^0+\cos^22^0+...+\cos^289^0\)
C=\(\frac{\sin33^0}{\cos57^0}+\frac{\tan32^0}{\cot58^0}-2\left(\sin20^0.\cos70^0+\cos20^0.\sin70^0\right)\)
D=\(4\cos^2a-6\sin^2a\) biết \(\sin a=\frac{1}{5}\)