Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thùy
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Phùng Khánh Linh
18 tháng 11 2018 lúc 11:34

Lâu lắm r mới quay lại web :))

Xét : \(2A=\dfrac{2\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{2\sqrt{xz}}{y+2\sqrt{xz}}+\dfrac{2\sqrt{xy}}{z+2\sqrt{xy}}\)

Áp dụng BĐT AM - GM cho các số dương , ta có :

\(\dfrac{2\sqrt{yz}}{x+2\sqrt{yz}}=\dfrac{x+2\sqrt{yz}-x}{x+2\sqrt{yz}}=1-\dfrac{x}{x+2\sqrt{yz}}\le1-\dfrac{x}{x+x+z}\left(1\right)\)

\(\dfrac{2\sqrt{xz}}{y+2\sqrt{xz}}=\dfrac{y+2\sqrt{xz}-y}{y+2\sqrt{xz}}=1-\dfrac{y}{y+2\sqrt{xz}}\le1-\dfrac{y}{x+y+z}\left(2\right)\)

\(\dfrac{2\sqrt{xy}}{z+2\sqrt{xy}}=\dfrac{z+2\sqrt{xy}-z}{z+2\sqrt{xy}}=1-\dfrac{z}{z+2\sqrt{xy}}\le1-\dfrac{z}{x+y+z}\left(3\right)\)

Cộng từng vế của \(\left(1;2;3\right)\) ta được :

\(2A\le1+1+1-\left(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}\right)=2\)

\(\Leftrightarrow A\le1\)

Dấu \("="\Leftrightarrow x=y=z\)

\(\Rightarrow A_{Max}=1\Leftrightarrow x=y=z\)

Đào Thị Hoàng Yến
Xem chi tiết
Akai Haruma
23 tháng 11 2018 lúc 21:41

Tham khảo tại đây:

Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến

Bi Bi
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 10 2019 lúc 20:27

\(3-2P=\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{xz}}+\frac{z}{z+2\sqrt{xy}}\)

\(3-2P\ge\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

Dấu "=" xảy ra khi \(x=y=z\)

\(M\le\sqrt{\left(1+1\right)\left(x+y+2\right)}=\sqrt{20}=4\sqrt{5}\)

\(M_{max}=4\sqrt{5}\) khi \(\left\{{}\begin{matrix}x-2=y+4\\x+y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Đạt Trần Tiến
Xem chi tiết
Lightning Farron
16 tháng 1 2018 lúc 22:01

Áp dụng BĐT Mincopxki ta có:

\(M=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)

\(=\sqrt{\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}}+\sqrt{\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}}+\sqrt{\left(z+\dfrac{x}{2}\right)^2+\dfrac{3x^2}{4}}\)

\(\ge\sqrt{\left(x+y+z+\dfrac{x+y+z}{2}\right)^2+\left(\dfrac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(\ge\sqrt{\left(1+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}=\sqrt{3}\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Akai Haruma
16 tháng 1 2018 lúc 22:05

Lời giải:

Ta có: \(x^2+xy+y^2=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\)

Mà \((x-y)^2\geq 0\forall x,y\in\mathbb{R}\Rightarrow x^2+xy+y^2\geq \frac{3}{4}(x+y)^2\)

\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}|x+y|\)

Tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}}{2}|y+z|; \sqrt{z^2+zx+x^2}\geq \frac{\sqrt{3}}{2}|x+z|\)

Cộng các BĐT trên thu được:

\(M\geq \frac{\sqrt{3}}{2}(|x+y|+|y+z|+|z+x|)\geq \frac{\sqrt{3}}{2}|2x+2y+2z|\)

\(\Leftrightarrow M\geq \frac{\sqrt{3}}{2}.2=\sqrt{3}\)

Vậy \(M_{\min}=\sqrt{3}\Leftrightarrow x=y=z=\frac{1}{3}\)

Trai Vô Đối
Xem chi tiết
TFBoys
4 tháng 8 2017 lúc 16:27

Ta có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\) (luôn đúng)

Vậy \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

Theo BĐT Cauchy-Schwarz dạng Engel

\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{1}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+y}=\dfrac{y}{y+z}=\dfrac{z}{z+x}\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

Hồ Minh Phi
Xem chi tiết
Akai Haruma
20 tháng 11 2018 lúc 0:55

Lời giải:

Để cho gọn đặt \((\sqrt{x}; \sqrt{y}; \sqrt{z})=(a,b,c)\) với \(a,b,c>0\)

Khi đó:

\(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{1}{2}(\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab})\)

\(=\frac{1}{2}\left(1-\frac{a^2}{a^2+2bc}+1-\frac{b^2}{b^2+2ac}+1-\frac{c^2}{c^2+2ab}\right)\)

\(=\frac{3}{2}-\frac{1}{2}\underbrace{\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)}_{M}\)

Áp dụng BĐT Cauchy-Schwarz:

\(M\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

\(\Rightarrow A=\frac{3}{2}-\frac{1}{2}M\leq \frac{3}{2}-\frac{1}{2}=1\)

Vậy \(A_{\max}=1\Leftrightarrow a=b=c\Leftrightarrow x=y=z\)

Thắng Nguyễn
Xem chi tiết
Ngọc Vĩ
Xem chi tiết
Lightning Farron
19 tháng 6 2016 lúc 18:09

Dự đoán dấu bằng có khi (x,y,z)(x,y,z) là các hoán vị (0;1;1).

Từ đó ta đánh giá làm mất căn:

Ta có:

\(4\sqrt{2}.\sqrt{\frac{xy+yz+zx}{x^2+y^2+z^2}}=\frac{8\left(xy+yz+zx\right)}{\sqrt{\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)}}\)\(\ge\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\)

Do đó ta chỉ cần có

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\ge6\)

Không mất tính tổng quát, giả sử \(x\ge y\ge z\) suy ra \(x\ge y>0,z\ge0\)

Khi đó, ta chứng minh BĐT mạnh hơn

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\ge6\)

\(\Leftrightarrow\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}-\frac{8\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\ge0\)

\(\Leftrightarrow\left(x+y+z\right)^3\left(x+y+2z\right)\ge8\left(x+z\right)\left(y+z\right)\left(x^2+y^2+z^2\right)\)

Hay \(\left(x+y+z\right)^4+z\left(x+y+z\right)^3\ge8z^2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\left(x^2+y^2+z^2\right)\)

Theo AM-GM:\(\left(x+y+z\right)^4=\left(x^2+y^2+z^2+2\left(xy+yz+zx\right)\right)^2\ge8\left(xy+yz+zx\right)\left(x^2+y^2+z^2\right)\)

Vậy ta chỉ cần chứng minh \(z\left(x+y+z\right)^3\ge8z^2\left(x^2+y^2+z^2\right)\)

\(BDT\Leftrightarrow\left(x+y+z\right)^3\ge8z\left(x^2+y^2+z^2\right)\)

Ta có:\(\left(x+y+z\right)^3=x^3+y^3+z^3+3x\left(y^2+z^2\right)+3y\left(z^2+x^2\right)+3z\left(x^2+y^2\right)+6xyz\ge x^3+y^3+z^3+3x^2y+3xy^2+5xyz+8z^3+3z\left(x^2+y^2\right)\)

Suy ra \(\left(x+y+z\right)^3-8z\left(x^2+y^2+z^2\right)\ge x^3+y^3+3x^2y+3xy^2+5xyz-5z\left(x^2+y^2\right)\)

\(=x^3+y^3+3x^2y+3xy^2+5z\left(xy-x^2-y^2\right)\ge x^3+y^3+3x^2y+3xy^2+5y\left(xy-x^2-y^2\right)\)

\(\ge x^3+y^3+3x^2y+3xy^2-5y\left(x^2+y^2\right)\)

\(=\left(x^2-y^2+4\right)\left(x-y\right)\ge0\)

BĐT được chứng minh.

 

 

 

 

Lightning Farron
8 tháng 8 2016 lúc 14:35

v~ để cái này lp 9 thì ko hợp @@

Đặng Minh Triều
18 tháng 6 2016 lúc 22:01

Oh shit!