Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Minh Phi

Cho x,y,z là các số dương. Tìm GTLN của: \(A=\dfrac{\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{\sqrt{xz}}{y+2\sqrt{xz}}+\dfrac{\sqrt{xy}}{z+2\sqrt{xy}}\)

Phùng Khánh Linh
18 tháng 11 2018 lúc 11:34

Lâu lắm r mới quay lại web :))

Xét : \(2A=\dfrac{2\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{2\sqrt{xz}}{y+2\sqrt{xz}}+\dfrac{2\sqrt{xy}}{z+2\sqrt{xy}}\)

Áp dụng BĐT AM - GM cho các số dương , ta có :

\(\dfrac{2\sqrt{yz}}{x+2\sqrt{yz}}=\dfrac{x+2\sqrt{yz}-x}{x+2\sqrt{yz}}=1-\dfrac{x}{x+2\sqrt{yz}}\le1-\dfrac{x}{x+x+z}\left(1\right)\)

\(\dfrac{2\sqrt{xz}}{y+2\sqrt{xz}}=\dfrac{y+2\sqrt{xz}-y}{y+2\sqrt{xz}}=1-\dfrac{y}{y+2\sqrt{xz}}\le1-\dfrac{y}{x+y+z}\left(2\right)\)

\(\dfrac{2\sqrt{xy}}{z+2\sqrt{xy}}=\dfrac{z+2\sqrt{xy}-z}{z+2\sqrt{xy}}=1-\dfrac{z}{z+2\sqrt{xy}}\le1-\dfrac{z}{x+y+z}\left(3\right)\)

Cộng từng vế của \(\left(1;2;3\right)\) ta được :

\(2A\le1+1+1-\left(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}\right)=2\)

\(\Leftrightarrow A\le1\)

Dấu \("="\Leftrightarrow x=y=z\)

\(\Rightarrow A_{Max}=1\Leftrightarrow x=y=z\)


Các câu hỏi tương tự
phan thị minh anh
Xem chi tiết
Trai Vô Đối
Xem chi tiết
Nguyễn Ngọc Tâm
Xem chi tiết
Phan Minh Chi
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Nam Nguyễn
Xem chi tiết
sunsies
Xem chi tiết
Vũ Sơn Tùng
Xem chi tiết
Ngoc Anh Vu
Xem chi tiết