Chọn kí hiệu “\( \in \)” và “\( \notin \)” thích hợp cho ?
a) \( - 16?\mathbb{Z}\).
b) \( - 20?\mathbb{N}\).
Chọn kí hiệu "∈", "∉" thích hợp cho ?:
a) - 3 ? \(\mathbb{Z}\);
b) 0 ? \(\mathbb{Z};\)
c) 4 ? \(\mathbb{Z};\)
d) - 2 ? \(\mathbb{N}.\)
a) -3 ∈ Z
b) 0 ∈ Z
c) 4 ∈ Z
d) -2 ∉ N
Điền kí hiệu \(\left(\in,\notin,\subset,\cap\right)\) thích hợp vào chỗ trống :
a) \(\dfrac{-3}{4}.....\mathbb{Z}\)
b) \(0.....\mathbb{N}\)
c) \(3,275.......\mathbb{N}\)
d) \(\mathbb{N}.......\mathbb{Z}=\mathbb{N}\)
e) \(\mathbb{N}.......\mathbb{Z}\)
a) \(-\dfrac{3}{4}\notin Z\)
b) \(0\in N\)
c) \(3,275\notin N\)
d) \(N\cap Z=N\)
e) \(N\subset Z\)
a) Lấy ba ví dụ về tập hợp và chỉ ra một số phần tử của chúng.
b) Với mỗi tập hợp \(\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}\), hãy sử dụng kí hiệu \( \in \) và \( \notin \)để chỉ ra hai phần tử thuộc hai phần tử không thuộc tập hợp đó.
a) A là tập hợp các số tự nhiên nhỏ hơn 5, khi đó \(0 \in A,2 \in A,3 \in A.\)
B là tập hợp các nghiệm thực của phương trình \({x^2} - 3x + 2 = 0\), khi đó \(1 \in B,2 \in B.\)
C là tập hợp các thứ trong tuần, khi đó chủ nhật \( \in C,\) thứ năm \( \in C.\)
b)
\(\begin{array}{l}0 \in \mathbb{N},\;2 \in \mathbb{N}, - 5 \notin \mathbb{N},\;\frac{2}{3} \notin \mathbb{N}.\\0 \in \mathbb{Z},\; - 5 \in \mathbb{Z},\frac{2}{3} \notin \mathbb{Z},\sqrt 2 \; \notin \mathbb{Z}.\\0 \in \mathbb{Q},\;\frac{2}{3} \in \mathbb{Q},\sqrt 2 \notin \mathbb{Q},\;\pi \notin \mathbb{Q}.\\\frac{2}{3} \in \mathbb{R},\;\sqrt 2 \in \mathbb{R},e \notin \mathbb{R},\;\pi \notin \mathbb{R}.\end{array}\)
Xét tính đúng sai của các mệnh đề sau:
a) \(\forall x \in \mathbb{N},{x^3} > x\)
b) \(\exists x \in \mathbb{Z},x \notin \mathbb{N}\)
c) \(\forall x \in \mathbb{R},\) nếu \(x \in \mathbb{Z}\) thì \(x \in \mathbb{Q}\)
a) Mệnh đề “\(\forall x \in \mathbb{N},{x^3} > x\)” sai vì \(0 \in \mathbb{N}\) nhưng \({0^3} = 0.\)
b) Mệnh đề “\(\exists x \in \mathbb{Z},x \notin \mathbb{N}\)” đúng, chẳng hạn \( - 2 \in \mathbb{Z}, - 2 \notin \mathbb{N}.\)
c) Mệnh đề “\(\forall x \in \mathbb{R},\) nếu \(x \in \mathbb{Z}\) thì \(x \in \mathbb{Q}\)” đúng vì \(\mathbb{Z} \subset \mathbb{Q}.\)
Điền các kí hiệu \(\in,\notin\) vào chỗ trống (.....)
\(-4....\mathbb{N}\) \(-5....\mathbb{Z}\) \(5....\mathbb{Z}\)
\(-4\notin N\)
\(-5\in Z\)
\(5\in Z\)
Điền kí hiệu \(\left(\in,\notin,\subset\right)\) thích hợp vào chỗ trống :
\(-5......\mathbb{N}\) \(-5.......\mathbb{Z}\) \(-\dfrac{3}{7}.......\mathbb{Z}\)
\(-5.........\mathbb{Q}\) \(-\dfrac{3}{7}........\mathbb{Q}\) \(\mathbb{N}.........\mathbb{Q}\)
\(-5\notin N\)
\(-5\in Q\)
\(-5\in Z\)
\(-\dfrac{3}{7}\in Q\)
\(-\dfrac{3}{7}\notin Z\)
\(N\subset Q\)
-5 ∈ N
-5 ∈ Z
\(-\dfrac{3}{7}\)∉ Z
-5 ∈ Q
\(-\dfrac{3}{7}\) ∈ Q
N ⊂ Q
\(-5\notin N\) ; \(-5\in Q\)
\(-5\in Z\) ; \(-\dfrac{3}{7}\in Q\)
\(-\dfrac{3}{7}\notin Z\) ; \(N\subset Q\)
Dùng kí hiệu để viết mỗi tập hợp sau và biểu diễn mỗi tập hợp đó trên trục số:
a) \(A = \{ x \in \mathbb{R}| - 2 < x < - 1\} \)
b) \(B = \{ x \in \mathbb{R}| - 3 \le x \le 0\} \)
c) \(C = \{ x \in \mathbb{R}|x \le 1\} \)
d) \(D = \{ x \in \mathbb{R}|x > - 2\} \)
Tham khảo:
a) Tập hợp A là khoảng (-2;1) và được biểu diễn là:
b) Tập hợp B là đoạn [-3; 0] và được biểu diễn là:
c) Tập hợp B là nửa khoảng \(( - \infty ;1]\) và được biểu diễn là:
d) Tập hợp B là nửa khoảng \((-2; - \infty )\) và được biểu diễn là:
Các phát biểu sau đúng hay sai?
a) \(9 \in \mathbb{N}\) b) \( - 6 \in \mathbb{N}\)
c) \( - 3 \in \mathbb{Z}\) d) \(0 \in \mathbb{Z}\)
e) \(5 \in \mathbb{Z}\) g) \(20 \in \mathbb{N}\)
a) Đúng vì 9 là số tự nhiên
b) Sai vì \( - 6\) là số nguyên âm, không phải là số tự nhiên.
c) Đúng vì \( - 3\) là số nguyên âm nên nó là số nguyên.
d) Đúng vì 0 là số nguyên
e) Đúng vì số 5 là số nguyên dương nên nó là số nguyên.
g) Đúng vì 20 là số tự nhiên.
Cho hai tập hợp C = {\(x \in \mathbb{R}|x \ge 3\)} và D = {\(x \in \mathbb{R}|x\;\, > 3\)}. Các mệnh đề sau đúng hay sai?
a) C, D là các tập con của \(\mathbb{R}\);
b) \(\forall x,\;x \in C \Rightarrow x \in D\);
c) \(3 \in C\) nhưng \(3 \notin D\);
d) \(C = D\)
a) Hiển nhiên: C, D là các tập con của \(\mathbb{R}\).
Vậy mệnh đề này đúng.
b) Mệnh đề “\(\forall x,\;x \in C \Rightarrow x \in D\)” sai. Vì \(3 \in C\) nhưng \(3 \notin D\);
c) Mệnh đề “\(3 \in C\) nhưng \(3 \notin D\)” đúng;
d) Mệnh đề “\(C = D\)” sai vì \(3 \in C\) nhưng \(3 \notin D\).
Điền các dấu ( \(\in,\notin,\subset\)) thích hợp vào ô trống :
a) \(3.......\mathbb{Q}\)
b) \(3......\mathbb{R}\)
c) \(e.....\text{I}\)
d) \(-2,53......\mathbb{Q}\)
e) \(0,2\left(35\right).......\text{I}\)
g) \(\mathbb{N}........\mathbb{Z}\)
h) \(\text{I}.......\mathbb{R}\)
3 ∈ Q
3 \(\in\) R
3 \(\notin\) I
-2,53 \(\in\) Q
0,2(35) \(\notin\) I
N ⊂ Z
I ⊂ R.
a,3 ∈ Q
b,3 ∈ R
c,3 ∉ I
d,-2,53 ∈ Q
e,0,2(35) ∉ I
g,N ⊂ Z
h,I ⊂ R.