a) 3x x 2x = 216
b) 2x = 64
tìm x:
a, (2x-5)^3=216
b, 2x-3 chia hết cho x+4( với x thuộc z)
c,|x-18|-2x+14=47
d,1 phần 6+ 5 phần 6:x = 7 phần12
a) Ta có: \(\left(2x-5\right)^3=216\)
\(\Leftrightarrow2x-5=6\)
\(\Leftrightarrow2x=11\)
hay \(x=\dfrac{11}{2}\)
b) Ta có: \(2x-3⋮x+4\)
\(\Leftrightarrow-11⋮x+4\)
\(\Leftrightarrow x+4\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-3;-5;7;-15\right\}\)
Alo, sugeni two wai phem. Si ga no, you woo be the me that nas te, ai gi da
X - ( 81 + 5x ) = 19
2x - ( 8 + 3x ) = 92
3 - ( 5x + 16 ) = - 18
64 - ( x + 81) = - 9
81 - ( 2x + 15 ) = - 10
3x - ( 7 + 2x ) = 97
x - ( 81 + 5x ) = 19
=> x - 81 - 5x = 19
=> ( x - 5x ) - 81 = 19
=> -4x = 19 + 81
=> -4x = 100
=> x = 100 : ( -4 )
=> x = -25
2x - ( 8 + 3x ) = 92
=> 2x - 8 - 3x = 92
=> ( 2x - 3x ) = 8 + 92
=> -x = 100
=> x = -100
giải pt:
a) (x2-3x)(x2+7x+10)=216
b) (2x2-7x+3)(2x2+x-3)+9=0
a) \(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\Rightarrow x\left(x-3\right)\left(x+2\right)\left(x+5\right)=216\)
\(\Rightarrow x\left(x+2\right)\left(x-3\right)\left(x+5\right)=216\Rightarrow\left(x^2+2x\right)\left(x^2+2x-15\right)=216\)
Đặt \(t=x^2+2x\Rightarrow\) pt trở thành \(t\left(t-15\right)=216\Rightarrow t^2-15t-216=0\)
\(\Rightarrow\left(t+9\right)\left(t-24\right)=0\Rightarrow\left[{}\begin{matrix}t=-9\\t=24\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+2x=-9\\x^2+2x=24\end{matrix}\right.\)
\(TH_1:x^2+2x=-9\Rightarrow x^2+2x+9=0\Rightarrow\left(x+1\right)^2+8=0\) (vô lý)
\(TH_2:x^2+2x=24\Rightarrow x^2+2x-24=0\Rightarrow\left(x-4\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)
b) \(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\)
\(\Rightarrow\left(x-3\right)\left(2x-1\right)\left(x-1\right)\left(2x+3\right)+9=0\)
\(\Rightarrow\left(x-3\right)\left(2x+3\right)\left(x-1\right)\left(2x-1\right)+9=0\)
\(\Rightarrow\left(2x^2-3x-9\right)\left(2x^2-3x+1\right)+9=0\)
Đặt \(t=2x^2-3x-9\Rightarrow\) pt trở thành \(t\left(t+10\right)+9=0\)
\(\Rightarrow t^2+10t+9=0\Rightarrow\left(t+1\right)\left(t+9\right)=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-9\end{matrix}\right.\)
\(TH_1:t=-1\Rightarrow2x^2-3x-9=-1\Rightarrow2x^2-3x-8=0\)
\(\Delta=\left(-3\right)^2-4\left(-8\right).2=73\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{73}}{4}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{73}}{4}\end{matrix}\right.\)
\(TH_2:t=-9\Rightarrow2x^2-3x-9=-9\Rightarrow2x^2-3x=0\Rightarrow x\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
Tìm x , biết :
a, ( 2x + 1 )^4 = 225
b, (3x - 1 )^2 = 64
a, \(\left(2x+1\right)^4=225\)
đề bài sai
bởi vì ko có số nào mà ^4 lên đc kết quả là 225
b, \(\left(3x-1\right)^2=64\)
Ta có : \(8^2=64\)
Vậy suy ra : 3x - 1 = 8
3x = 8 + 1
3x = 9
x = 9 : 3
x = 3
b) (3x - 1)2 = 64
(3x - 1)2 = 82
=> (3x - 1) = 8
=> x = 3
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm x , biết :
a) (3x -1)(2x+7) -(x+1)(6x-5) =16
b) (2x +3)2-2(2x+3)(2x-5)+(2x-5)2= x2+6x+64
c) (x4+2x3+10x-25): (x2+5)=3
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)
\(\Leftrightarrow18x-18=0\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=18:18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
b) \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2-\left(x^2+6x+64\right)=0\)
\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)
\(\Leftrightarrow8^2-x^2-6x-64=0\)
\(\Leftrightarrow64-x^2-6x-64=0\)
\(\Leftrightarrow-x^2-6x=0\)
\(\Leftrightarrow x\left(-x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=-6\)
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)
\(\Leftrightarrow18x-18=0\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=18:18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
b, \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x- 5\right)^2=x^2+6x+64\)
\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2- \left(x^2+6x+64\right)=0\)
\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)
\(\Leftrightarrow8^2-x^2-6x-64=0\)
\(\Leftrightarrow64-x^2-6x-64=0\)
\(\Leftrightarrow-x^2-6x=0\)
\(\Leftrightarrow x\left(-x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=6\)
a) (3x−1)(2x+7)−(x+1)(6x−5)=16(3x−1)(2x+7)−(x+1)(6x−5)=16
⇔(6x2+21x−2x−7)−(6x2−5x+6x−5)−16=0⇔(6x2+21x−2x−7)−(6x2−5x+6x−5)−16=0
⇔6x2+21x−2x−7−6x2+5x−6x+5−16=0⇔6x2+21x−2x−7−6x2+5x−6x+5−16=0
⇔18x−18=0⇔18x−18=0
⇔18x=18⇔18x=18
⇔x=18:18⇔x=18:18
⇔x=1⇔x=1
Vậy x=1x=1
b) (2x+3)2−2(2x+3)(2x−5)+(2x−5)2=x2+6x+64(2x+3)2−2(2x+3)(2x−5)+(2x−5)2=x2+6x+64
⇔[(2x+3)−(2x−5)]2−(x2+6x+64)=0⇔[(2x+3)−(2x−5)]2−(x2+6x+64)=0
⇔(2x+3−2x+5)2−x2−6x−64=0⇔(2x+3−2x+5)2−x2−6x−64=0
⇔82−x2−6x−64=0⇔82−x2−6x−64=0
⇔64−x2−6x−64=0⇔64−x2−6x−64=0
⇔−x2−6x=0⇔−x2−6x=0
⇔x(−x−6)=0⇔x(−x−6)=0
⇔[x=0−x−6=0⇔[x=0−x−6=0
⇔[x=0−x=6⇔[x=0−x=6
⇔[x=0x=−6⇔[x=0x=−6
Vậy x=0x=0 hoặc x=−6
Tìm x: a) (3x-1)(2x+7) - (x+1)(6x-5) = 16
b) (2x+3)2 - 2(2x+3)(2x-5) + (2x-5)2 = x2 + 6x + 64
a) 2x . 4 = 128
b) (2x + 1 ) 3 = 125
c) 2x - 26 = 6
d) 64 . 4x = 45
e) 27 . 3x = 243
g) 49 . 7x = 2041
a) \(\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5\)
b) \(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
c) \(\Rightarrow2^x=32\Rightarrow x=5\)
d) \(\Rightarrow4^3.4^x=4^5\Rightarrow4^x=4^2\Rightarrow x=2\)
e) \(\Rightarrow3^3.3^x=3^5\Rightarrow3^x=3^2\Rightarrow x=2\)
f) \(\Rightarrow7^2.7^x=7^4\Rightarrow7^x=7^2\Rightarrow x=2\)
a. 2x . 4 = 128
<=> 2x + 2 = 27
<=> x + 2 = 7
<=> x = 5
b. (2x + 1)3 = 125
<=> (2x + 1)3 - 53 = 0
<=> (2x + 1 - 5)\(\left[\left(2x+1\right)^2+\left(2x+1\right).5+25\right]=0\)
<=> (2x - 4)(4x2 + 4x + 1 + 10x + 5 + 25) = 0
<=> (2x - 4)(4x2 + 14x + 31) = 0
<=> \(\left[{}\begin{matrix}2x-4=0\\4x^2+14x+31=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\VôNghiệm\end{matrix}\right.\)
c. 2x - 26 = 6
<=> 2x = 32
<=> x = 5
d. 64 . 4x = 45
<=> 43 . 4x = 45
<=> 43 + x = 45
<=> 3 + x = 5
<=> x = 2
e. 27 . 3x = 243
<=> 33 . 3x = 35
<=> 33 + x = 35
<=> 3 + x = 5
<=> x = 2
g. 49 . 7x = 2401 (Bn xem lại đề câu này)
<=> 72 . 7x = 74
<=> 72 + x = 74
<=> 2 + x = 4
<=> x = 2
a, 2x.4= 128
=> 2x= 128:4
=>2x= 32
=> 2x=25
=> x=5
\(\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=\left(\pm5\right)^3\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c, 2x - 26 = 6
=> 2x = 32
=> 2x= 25
=> x=5
d, 64. 4x = 45
=> 43. 4x= 45
=> 3+x=5
=> x=2
e, 27. 3x= 243
=> 33. 3x= 35
=> 3+x=5
=> x=2
Hoctot
BÀI 4: TÌM X (ghi rõ cách tính và kết quả)
1) 3x – 15 = 45
2) 35 – 5x = 50
3) (2x – 5) + 17 = 6
4) 10 – 2(4 – 3x) = -4
5) - 12 + 3(-x + 7) = -18
6) 24 : (3x – 2) = -3
7) -45 : 5.(-3 – 2x) = 3
1) 3x = 45 + 15 = 60
x = 60 : 3 = 20
2) 5x = 50 - 35 = 15
x = 15 : 5 = 3
3) (2x - 5) + 17 = 6
2x - 5 = 6 - 17
2x - 5 = -11
2x = -11 + 5
2x = -6
x = -6 : 2 = -3
4) 10 - 2(4 -3x) = -4
2(4 - 3x) = -4 - 10 = -14
4 - 3x = -14 : 2 = -7
3x = -7 - 4 = -18
x = -18 : 3 = -6
BÀI 4: TÌM X (ghi rõ từng bước của phép tính)
1) 3x – 15 = 45
2) 35 – 5x = 50
3) (2x – 5) + 17 = 6
4) 10 – 2(4 – 3x) = -4
5) - 12 + 3(-x + 7) = -18
6) 24 : (3x – 2) = -3
7) -45 : 5.(-3 – 2x) = 3
\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}3x-15=45\Leftrightarrow3x=60\Leftrightarrow x=20\\35-5x=50\Leftrightarrow5x=-15\Leftrightarrow x=-3\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)+17=6\Leftrightarrow2x+5=-11\Leftrightarrow2x=-16\Leftrightarrow x=-8\\10-2\left(4-3x\right)=-4\Leftrightarrow8-6x=14\Leftrightarrow6x=-6\Leftrightarrow x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}-12+3\left(-x+7\right)=-18\Leftrightarrow-3x+21=-6\Leftrightarrow-3x=-27\Leftrightarrow x=9\\24:\left(3x-2\right)=-3\Leftrightarrow3x-2=-8\Leftrightarrow3x=-6\Leftrightarrow x=-2\end{matrix}\right.\\-45:5\left(-3-2x\right)=3\Leftrightarrow-15-10x=-15\Leftrightarrow10x=0\Leftrightarrow x=0\end{matrix}\right.\)