Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 12:26

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 15:45

a) Vì \(\left| {{u_n}} \right| = \left| 0 \right| = 0 < 1\) nên theo định nghĩa dãy số có giới hạn 0 ta có \(\lim 0 = 0;\)

b) Vì \(0 < \left| {\frac{1}{{\sqrt n }}} \right| < 1\) nên theo định nghĩa dãy số có giới hạn 0 ta có \(\lim \frac{1}{{\sqrt n }} = 0.\)

Phú Gia
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 7 2016 lúc 2:25

Xét biểu thức : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)với n > 0

Áp dụng : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2024}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2025}-\sqrt{2024}\right)\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2024}}>2\left(\sqrt{2025}-1\right)=88\) (đpcm)

Dương Tuấn
Xem chi tiết
Đoàn Hoàng Mỹ Duyên
Xem chi tiết
Nguyễn Thanh Hằng
11 tháng 5 2017 lúc 18:16

\(A=\dfrac{3}{1.4}+\dfrac{3}{2.6}+\dfrac{3}{3.8}+...............+\dfrac{1}{2012.1342}\)

\(A=\dfrac{3}{1.4}+\dfrac{3}{2.6}+\dfrac{3}{3.8}+...........................+\dfrac{3}{2012.4026}\)

\(A=\dfrac{6}{2.4}+\dfrac{6}{4.6}+\dfrac{6}{6.8}+..........................+\dfrac{6}{4024.4026}\)

\(A=3\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...................+\dfrac{2}{4024.4026}\right)\)

\(A=3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+....................+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\)

\(A=3\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\)

\(A=3.\dfrac{1}{2}-3.\dfrac{1}{4026}\)

\(A=1,5-\dfrac{3}{4026}< 1,5\)

Đỗ Thanh Hải
11 tháng 5 2017 lúc 20:01

Ta có

A = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{2.6}\) + \(\dfrac{3}{3.8}\) + ... + \(\dfrac{1}{2012.1342}\)

A = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{2.6}\) + \(\dfrac{3}{3.8}\) + ... + \(\dfrac{3}{2012.4026}\)

A = \(\dfrac{6}{2.4}\) + \(\dfrac{6}{4.6}\) + \(\dfrac{6}{6.8}\) + ... + \(\dfrac{6}{4024.4026}\)

A = \(3\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{4024.4026}\right)\)

A = \(3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\)

A = \(3\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\)

A = 3.\(\dfrac{1}{2}\) - 3.\(\dfrac{1}{4026}\)

A = 1,5 - \(3.\dfrac{1}{4026}\) < 1,5

=> A < 1,5

=> đpcm

 

Nguyễn Thanh Hằng
13 tháng 5 2017 lúc 11:53

Cô @Bùi Thị Vân hình như có gì đó nhầm lẫn!!

Đoàn Hoàng Mỹ Duyên
Xem chi tiết
Tiểu Thư Họ Vũ
11 tháng 5 2017 lúc 16:11

\(A=\)\(\frac{3}{1.4}\)\(+\)\(\frac{3}{2.6}\)\(+\)\(\frac{3}{2.8}\)\(+\).........\(+\)\(\frac{1}{2012.1342}\)\(< 1,5\)

\(=\)\(\frac{3}{1.4}\)\(+\)\(\frac{3}{2.6}\)\(+\)\(\frac{3}{3.8}\)\(+\)............\(+\)\(\frac{3}{2012.4026}\)

\(=\)\(\frac{6}{2.4}\)\(+\)\(\frac{6}{4.6}\)\(+\)\(\frac{6}{6.8}\)\(+\)..............\(+\)\(\frac{6}{4024.4026}\)

\(=\)\(3.\)\(\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...........+\frac{2}{4024.4026}\right)\)

\(=\)\(3.\)\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{4024}-\frac{1}{4026}\right)\)

\(=\)\(3.\)\(\left(\frac{1}{2}-\frac{1}{4026}\right)\)

\(=\)\(3.\)\(\frac{1}{2}\)\(-\)\(3.\)\(\frac{1}{4026}\)

\(=\)\(1,5\)\(-\)\(\frac{3}{4026}\)\(< \)\(1,5\)

Vậy \(A< 1,5\)

Đỗ Chấn Hưng
Xem chi tiết
Đỗ Chấn Hưng
10 tháng 1 lúc 20:13

cứu tôi

 

minh hue
10 tháng 1 lúc 20:22

what ?

 

minh hue
10 tháng 1 lúc 20:23

102024+2024 chính là số tự nhiên vì cả hai số đều là số tự nhiên :)

Bùi Công Doanh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
13 tháng 9 2023 lúc 22:37

a) Vì \(ABCD\) là hình bình hành nên \(AB//CD;AD//BC\)

\( \Rightarrow AB//DG;AB//CG;BK//AD;KC//AD\)

Xét tam giác \(DEG\) có \(AB//DG\), theo hệ quả của định lí Thales ta có:

\(\frac{{AE}}{{EG}} = \frac{{EB}}{{ED}}\) (1)

Xét tam giác \(ADE\) có \(BK//AD\), theo hệ quả của định lí Thales ta có:

\(\frac{{EK}}{{AE}} = \frac{{EB}}{{ED}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AE}}{{EG}} = \frac{{EK}}{{AE}} \Rightarrow A{E^2} = EG.EK\) (điều phải chứng minh).

b) Xét tam giác \(AED\) có:

\(AD//BK \Rightarrow \frac{{AE}}{{AK}} = \frac{{DE}}{{DB}}\)(3)

Xét tam giác \(AEB\) có

\(AB//BK \Rightarrow \frac{{AE}}{{AG}} = \frac{{BE}}{{BD}}\) (4)

Từ (3) và (4) ta được:

\(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = \frac{{DE}}{{BD}} + \frac{{BE}}{{BD}} = \frac{{BD}}{{BD}} = 1\)

Ta có: \(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = 1 \Rightarrow \frac{1}{{AE}} = \frac{1}{{AK}} + \frac{1}{{AG}}\) (chia cả hai vế cho \(AE\)) (điều phải chứng minh).

NGUYỄN THỊ NGỌC ÁNH
Xem chi tiết
Nguyễn Trí Nghĩa (team b...
20 tháng 10 2019 lúc 9:13

2023 mũ 2024+2024 mũ 2025+2025 mũ 2026

Xét 2023 mũ 2024

\(^{2023^{2024}}\)=\(^{2023^{4.501}}\)=(\(^{2023^4}\))\(^{^{501}}\)

Ta có:\(^{2023^4}\)tận cùng là 1

=>2023 mũ 4 tất cả mũ 501 tận cùng là 1

Xét 2024 mũ 2025

2024 mũ 2025=2024 mũ 2 .1012+1=2024 mũ 2.1012 nhân 2024=(2024 mũ 2)mũ 1012.2024

Ta có:2024  mũ 2 tận cùng là 6

=>(2024 mũ 2) tất cả mũ 1012 tận cùng là 6

=>(2024 mũ 2) tất cả mũ 1012 nhân 2024 tận cùng là4

Xét 2025 mũ 2026

2025 mũ 2026

 5 mũ bao nhiêu thì chữ số tận cùng vẫn là 5

=>2025 mũ 2026 tận cùng là 5

Vậy tổng của các chữ số tận cùng là:1+4+5=10 chia hết cho 10

=> Tổng của 2023 mũ 2024+2024 mũ 2025+2025 mũ 2026 chia hết cho 10

Đây là bài áp dụng tính chất tìm chữ số tận cùng

Chúc bn học tốt

Khách vãng lai đã xóa
HD Film
20 tháng 10 2019 lúc 9:13

\(2023^{2024}+2024^{2025}+2025^{2026}\equiv\left(-1\right)^{1012}+\left(-1\right)^{2025}+0\equiv0\)(mod 5)

-> chia hết cho 5

Dễ dàng nhận thấy \(2023^{2024}+2025^{2026}\) là số chẵn mà \(2024^{2025}\)cũng là số chẵn nên chia hết cho 2

Do (2,5) = 1 nên chia hết cho 10

Khách vãng lai đã xóa