Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Việt
Xem chi tiết
Akai Haruma
29 tháng 4 2023 lúc 16:10

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

Akai Haruma
29 tháng 4 2023 lúc 16:47

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Nguyễn Đức Việt
29 tháng 4 2023 lúc 17:11

Nãy mình tìm được một cách giải tương tự cho câu 2.

PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)

Vậy pt có 1 nghiệm bằng 1.

\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)

\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)

\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)

\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)

Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)

Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))

Future In Your Hand ( Ne...
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 23:12

ĐKXĐ: \(\left\{{}\begin{matrix}x-4\ge0\\4-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le4\end{matrix}\right.\) \(\Leftrightarrow x=4\)

Thay \(x=4\) vào pt thấy thỏa mãn

Vậy pt có nghiệm duy nhất \(x=4\)

swalal
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 21:59

=>\(4-\sqrt{4+x}=x^2\)

=>\(\sqrt{4+x}=4-x^2\)

=>\(x+4=\left(4-x^2\right)^2\)

=>x^4-8x^2+16-x-4=0

=>x^4-8x^3-x+12=0

\(\Leftrightarrow x\in\left\{1,17;8\right\}\)

Nguyễn Thị Cẩm Nhi
Xem chi tiết
em ơi
Xem chi tiết
SC__@
26 tháng 2 2021 lúc 21:14

a) đk: \(1\le x\le5\)

 \(\sqrt[4]{5-x}+\sqrt[4]{x-1}=\sqrt{2}\)

<=> \(\left(\sqrt[4]{5-x}+\sqrt[4]{x-1}\right)^4=\sqrt{2}^4\)

<=> \(5-x+x-1+4\sqrt[4]{5-x}^3.\sqrt[4]{x-1}+6\sqrt[4]{5-x}^2.\sqrt[4]{x-1}^2+4\sqrt[4]{5-x}.\sqrt[4]{x-1}^3=4\)

<=> \(\sqrt[4]{\left(5-x\right)\left(x-1\right)}.\left(2\sqrt[4]{5-x}^2+3\sqrt[4]{5-x}.\sqrt[4]{x-1}+2\sqrt[4]{x-1}^2\right)=0\)

<=> \(\left[{}\begin{matrix}\sqrt[4]{\left(5-x\right)\left(x-1\right)}=0\left(2\right)\\2\sqrt[4]{5-x}^2+3\sqrt[4]{\left(5-x\right)\left(x-1\right)}+2\sqrt[4]{x-1}^2=0\left(1\right)\end{matrix}\right.\)

Giải (2) <=> \(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\left(tm\right)\)

Giải (1) : Đặt \(\sqrt[4]{5-x}=a;\sqrt[4]{x-1}=b\)(đk : a, b \(\ge\)0)

Khi đó, ta có: \(2a^2+3ab+2b^2=0\)

<=> 2(a2 + 3/2ab + 9/16b2) + \(\dfrac{7}{8}b^2=0\)

<=> \(2\left(a+\dfrac{3}{4}b\right)^2+\dfrac{7}{8}b^2=0\)

<=> \(\left\{{}\begin{matrix}a+\dfrac{3}{4}b=0\\b=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\sqrt[4]{x-1}=0\\\sqrt[4]{5-x}=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)(vô lí)

 

Phương Pham
3 tháng 12 2021 lúc 20:34

Đỗ Lam Tư
Xem chi tiết
Lê Thị Thục Hiền
8 tháng 7 2021 lúc 13:17

Đk:\(x^2-4\ge0\)

Pttt:\(\Leftrightarrow\sqrt{\left(x^2-4\right)+4\sqrt{x^2-4}+4}=x^2-4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x^2-4}+2\right)^2}=x^2-4\)

\(\Leftrightarrow\sqrt{x^2-4}+2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)-\sqrt{x^2-4}-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4}=2\\\sqrt{x^2-4}=-1\left(vn\right)\end{matrix}\right.\)\(\Rightarrow x^2-4=4\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\) (tm)

Vậy...

Linh Phạm
Xem chi tiết
Akai Haruma
19 tháng 7 2023 lúc 0:12

Lời giải:

ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow x+4\sqrt{x-4}=4$

$\Leftrightarrow (x-4)+4\sqrt{x-4}=0$

$\Leftrightarrow \sqrt{x-4}(\sqrt{x-4}+4)=0$

Hiển nhiên $\sqrt{x-4}+4>0$ với mọi $x\geq 4$

$\Rightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

Nkjuiopmli Sv5
Xem chi tiết
Hồng Phúc
11 tháng 1 2021 lúc 18:03

ĐK: \(-1\le x\le4\)

\(\sqrt{x+1}+\sqrt{4-x}=t\left(\sqrt{5}\le t\le\sqrt{10}\right)\Rightarrow\sqrt{-x^2+3x+4}=\dfrac{t^2-5}{2}\)

\(pt\Leftrightarrow t+\dfrac{t^2-5}{2}=5\)

\(\Leftrightarrow t^2+2t-15=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+5\right)=0\)

\(\Leftrightarrow t=3\left(\text{Vì }\sqrt{5}\le t\le\sqrt{10}\right)\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}=3\)

\(\Leftrightarrow5+2\sqrt{-x^2+3x+4}=9\)

\(\Leftrightarrow\sqrt{-x^2+3x+4}=2\)

\(\Leftrightarrow-x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Ánh Dương
Xem chi tiết
Hồng Phúc
11 tháng 12 2020 lúc 22:36

Đề đúng chưa v

Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)