Cho tam giác ABC có AB=5cm, góc ABC=40độ, góc ACB=30độ D là chân đường vuông góc kẻ từ A đến cạnh BC. Tính AC, AD, DC
Cho tam giác ABC có AB=5cm, góc ABC=40 độ, góc ACB, Góc ACB=30độ D là chân đường vuông góc kẻ từ A đến cạnh BC. Tính AC, AD, DC
Cho tam giác ABC có AB=5cm, góc ABC=40cm, góc ACB=30độ D là chân dường vuông góc kẻ tù A đến cạnh BC. TÍnh AC, AD, DC
Cho tam giác ABC, trong đó BC = 11cm, ∠ABC = 38o, ∠ACB = 30o. Gọi điểm N là chân của đường vuông góc kẻ từ A đến cạnh BC. Hãy tính:
Cạnh AC
Gợi ý: Kẻ BK vuông góc với AC.
Cho tam giác ABC có AB=AC, đường cao BH. Từ điểm D trên cạnh BC kẻ DE vuông góc với AB, DF vuông góc với AC, DK vuông góc với BH.
a) Chứng minh rằng góc KDB= góc ACB.
b) Chứng minh rằng tam giác EBD = tam giác KDB
c) Chứng minh rằng DE+ DF= BH
d) Trên tia đối của tia CA lấy điểm P sao cho CP = HF. Chứng minh rằng trung điểm của EP nằm trên BC.
e) Cho góc A = 40độ, kẻ đường cao AM. Trên các đoạn thẳng AM , AC lấy điểm E, F sao cho góc ABE= góc CBF = 30độ. Tính góc AEF.
Cho tam giác ABC,trong đó BC=11cm,góc ABC=\(38^o\),góc ACB=\(30^o\).Gọi điểm N là chân của đường vuông góc kẻ từ A đến cạnh BC.Hãy tính:
a)Đoạn thẳng AN
b)Cạnh AC
(Kẻ BK trong tam giác ABC vuông góc với AC)
a: ΔANB vuông tại N
=>tan B=AN/NB
=>AN=NB*tan38
ΔANC vuông tại N
=>AN=NC*tan30
=>NB*tan38=NC*tan30
=>NB/NC=tan30/tan38\(\simeq0,74\)
=>NB=0,74NC
mà NB+NC=11
nên \(NB\simeq4,68\left(cm\right);NC\simeq6,32\left(cm\right)\)
AN=NC*tan30=6,32*tan30\(\simeq3,65\left(cm\right)\)
b: góc BAC=180-38-30=180-68=112 độ
Xét ΔABC có BC/sinA=AC/sinB
=>\(AC=\dfrac{11}{sin112}\cdot sin38\simeq7,3\left(cm\right)\)
Cho tam giác ABC, trong đó BC = 11cm, ∠ A B C = 38 ° , ∠ A C B = 30 ° . Gọi điểm N là chân của đường vuông góc kẻ từ A đến cạnh BC. Hãy tính:
a) Đoạn thẳng AN
b) Cạnh AC
Gợi ý: Kẻ BK vuông góc với AC.
Kẻ BK ⊥ AC (K ∈ AC).
Trong tam giác vuông BKC có:
∠ K B C = 9 ° o – 30 ° = 60 ° = > ∠ K B A = 60 ° – 38 ° = 22 °
BC = 11 (cm) => BK = 5,5 (cm) ( tính chất cạnh đối diện góc 30° trong tam giác vuông bằng nửa cạnh huyền )
Xét tam giác ABK vuông tại K:
Xét tam giác ANB vuông tại N:
=> AN = ABsinABN = 5,93.sin38° ≈ 3,65(cm)
b) Xét tam giác ANC vuông tại N:
cho tam giác abc có ab=6cm ac=8cm bc=10cm a) cm tam giác ABC vuông B ) kẻ đường cao AD tính AD BD DC c) gọi P Q là chân đường vuông góc kẻ từ D xuống ab ac .Cm ap nhân ab = aq nhân ac= db nhân dc d) cm pa nhân pb + qa nhân qc = ad mũ 2 d) tính pq
a)Ta có: 62+82=102
⇒ AB2+AC2=BC2
⇒ ΔABC vuông tại A (Py-ta-go đảo)
b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)
Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)
Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)
c)Vì P là hình chiếu của D trên AB
⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)
Xét ΔAPD và ΔADB có:
\(\widehat{A}:chung\)
\(\widehat{APD}=\widehat{ADB}=90^o\)
⇒ ΔAPD ∼ ΔADB (g-g)
\(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)
Chứng minh tương tự,ta có: ΔADQ ∼ ΔACD (g-g)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)
Ta có: AD2 = BD.CD (HTL) (3)
Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2
d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)
⇒ APDQ là hình chữ nhật
⇒ AD=PQ và \(\widehat{PDQ}=90^o\)
Ta có: AP.BP=DP2 (HTL trong ΔADB)
AQ.CQ=DQ2 (HTL trong ΔADC)
⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)
Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2
e) Ta có: PQ=AD (cmt)
Mà AD = 4,8 cm
⇒ PQ = 4,8 cm
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔBAC vuông tại A
Cho tam giác ABC trong đó BC = 11cm , góc ABC =38 độ góc ACB= 30 độ gọi điểm N là chân của đường vuông góc kẻ từ A đến cạnh BC . Hãy tính đoạn thẳng AN và cạnh AC
kẻ BK vuongAC ^CBK vuong tai K và ^C = 30 độ = > tam giácCBK nửa đều BK = BC/2 = 5,5 ^KBC = 180-(BKA+^C) = 60độ ^KBA = ^KBC-^ABC = 22 độ = >tam giác KBA có KBA = 22 độ = >AB = BK:sinKBA = 5,5:sin22 = 5,93194 AN = AB.sinABN = 3,65207 b) AC = 2AN = 7,30414
Kẻ \(BK\perp AC\left(K\in AC\right)\)
Trong tam giác vuông BKC có:
\(\widehat{KBC}=60^o-30^o=60^o\)
\(\Rightarrow\widehat{KBA}=60^o-38^o=22^o\)
BC = 11 (cm) => BK = 5,5 (cm) ( tính chất cạnh đối diện góc 30° trong tam giác vuông bằng nửa cạnh huyền )
Xét tam giác ABK vuông tại K : \(\cos KBA=\frac{BK}{AB}\)
\(\Rightarrow AB=\frac{BK}{\cos KBA}=\frac{5,5}{\cos22^o}\approx5,93\left(cm\right)\)
Xét tam giác ANB vuông tại N : \(\sin ABN=\frac{AN}{AB}\)
\(\Rightarrow AN=AB\sin ABN=5,93.\sin38^o\approx3,65\left(cm\right)\)
b) Xét tam giác ANC vuông tại N : \(\sin ACN=\frac{AN}{AC}\)
\(AC=\frac{AN}{\sin ACN}\approx\frac{3,65}{\sin30^o}\approx7,3\left(cm\right)\)
CHO TAM GIÁC ABC VUÔNG TẠI A CÓ GÓC C=30 . KẺ AH VUÔNG GÓC BC. TRÊN ĐOẠN THẲNG HC LẤY D SAO CHO HD=HB. E LÀ CHÂN ĐƯỜNG VUÔNG GÓC KẺ TỪ C ĐẾN AD
. CHỨNG MINH
A, , AB=AD
B, TAM GIÁC ABD ĐỀU
C, SO SÁNH AH VÀ CE
D, BIẾT AB=5CM. TÍNH ĐỘ DÀI AH VÀ BC
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
=>AB=AD
b: Ta có: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+30^0=90^0\)
=>\(\widehat{ABC}=60^0\)
Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)
nên ΔABD đều
c: Ta có: ΔABD đều
=>\(\widehat{BAD}=60^0\)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)
=>\(\widehat{CAD}=90^0-60^0=30^0\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔDHA=ΔDEC
=>AH=EC
d: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)
=>\(BC=5\cdot2=10\left(cm\right)\)
Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)
=>\(\dfrac{AH}{5}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)