giải phương trình
5x-\(\sqrt{2x}\)-6=0
Giải phương trình
5x^3 - 2x^2 - 7x = 0
\(5x^3-2x^2-7x=0\\ \Leftrightarrow x\left(5x^2-2x-7\right)=0\\ \Leftrightarrow x\left[\left(5x^2+5x\right)-\left(7x+7\right)\right]=0\\ \Leftrightarrow x\left[5x\left(x+1\right)-7\left(x+1\right)\right]=0\\ \Leftrightarrow x\left(5x-7\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\\x=-1\end{matrix}\right.\)
5x3−2x2−7x=0⇔x(5x2−2x−7)=0⇔x[(5x2+5x)−(7x+7)]=0⇔x[5x(x+1)−7(x+1)]=0⇔x(5x−7)(x+1)=0⇔⎡⎢ ⎢ ⎢⎣x=0x=75x=−1
giải/hệ/phương/trình
5x-y=5
y-4x=1
$\begin{cases}5x-y=5\\y-4x=1\end{cases}$
`<=>` $\begin{cases}\5x-y+y-4x=6\\y-4x=1end{cases}$
`<=>` $\begin{cases}x=6\\y=1+4x=25\end{cases}$
Vậy HPT có nghiệm `(x,y)=(6,25)`
$\begin{cases}5x-y=5\\y-4x=1\end{cases}$
`<=>` $\begin{cases}\5x-y+y-4x=6\\y-4x=1\end{cases}$
`<=>` $\begin{cases}x=6\\y=1+4x=25\end{cases}$
Vậy HPT có nghiệm `(x,y)=(6,25)`
\(\left\{{}\begin{matrix}5x-y=5\\y-4x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-y=5\\-4x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\-4x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\-4.6+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\-24+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=25\end{matrix}\right.\)
Vậy...
Giải phương trình và bất phương trình
a) \(3\sqrt{-x^2+x+6}+2\left(2x-1\right)>0\)
b)\(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
Câu b còn 1 cách giải nữa:
Với \(x=0\) không phải nghiệm
Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:
\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)
Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)
Phương trình trở thành:
\(\sqrt{t^2+12}+t=6\)
\(\Leftrightarrow\sqrt{t^2+12}=6-t\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)
\(\Rightarrow t=2\)
\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)
\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)
\(\Rightarrow2x^2-8x+5=0\)
\(\Leftrightarrow...\)
giải phương trình
a. cosx - \(\sqrt{3}\)sinx = \(\sqrt{2}\)
b. 5\(sin^2x\) + sinxcosx - 6\(cos^2x\)=0
a/ \(\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\sin\left(\dfrac{\pi}{6}-x\right)=\dfrac{\sqrt{2}}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{6}-x=\dfrac{\pi}{4}+k2\pi\\\dfrac{\pi}{6}-x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)
b/ \(\cos x=0\) ko la nghiem cua pt
\(\cos x\ne0\Rightarrow pt\Leftrightarrow5\tan^2x+\tan x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\tan x=1\\\tan x=-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow...\)
giải phương trình sau:
\(x^2+2x+6-2\sqrt{2x-1}-4\sqrt{x^2+3}=0\)
Giải phương trình:
\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=0\)
Điều kiện: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}=0}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=0\)
\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=0\)
Với \(\dfrac{1}{2}\le x< 1\)
\(\Leftrightarrow1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow-2\sqrt{2x-1}+6=0\)
\(\Leftrightarrow x=5\left(l\right)\)
Tương tự cho các trường hợp: \(1\le x< \dfrac{5}{2};\dfrac{5}{2}\le x< 5;x\ge5\)
Tới đây thì kết luận thôi.
\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=0\)
ĐK:\(x\ge\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{2x-1-2\sqrt{2x-1}+1}-2\sqrt{2x-1-4\sqrt{2x-1}+4}+3\sqrt{2x-1-6\sqrt{2x-1}+9}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{2x-1}-1-2\left(\sqrt{2x-1}-2\right)+3\left(\sqrt{2x-1}-3\right)=0\)
\(\Leftrightarrow\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=0\)
\(\Leftrightarrow2\sqrt{2x-1}-6=0\)\(\Leftrightarrow\sqrt{2x-1}=3\)
\(\Leftrightarrow2x-1=9\Leftrightarrow2x=10\Rightarrow x=5\) *Thỏa*
giải phương trình:
a) \(\sqrt{x+6}-\sqrt{x-2}=2\)
b) \(2\sqrt{x-3}-2x+3=0\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x+6>=0\\x-2>=0\end{matrix}\right.\Leftrightarrow x>=2\)
\(\sqrt{x+6}-\sqrt{x-2}=2\)
=>\(\left(\sqrt{x+6}-\sqrt{x-2}\right)^2=4\)
=>\(x+6+x-2-2\sqrt{\left(x+6\right)\left(x-2\right)}=4\)
=>\(2\sqrt{\left(x+6\right)\left(x-2\right)}=2x+4-4=2x\)
=>\(\sqrt{\left(x+6\right)\left(x-2\right)}=x\)
=>\(\left\{{}\begin{matrix}x>=0\\\left(x+6\right)\left(x-2\right)=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=2\\x^2+4x-12=x^2\end{matrix}\right.\)
=>x=3
b: ĐKXĐ: \(x-3>=0\)
=>x>=3
\(2\sqrt{x-3}-2x+3=0\)
=>\(\sqrt{4x-12}=2x-3\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\4x-12=4x^2-12x+9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-12x+9-4x+12=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-16x+21=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Giải phương trình \(\sqrt{3x+1}+\sqrt{2x-1}+x^2+2x-6=0\) bằng phương pháp đặt ẩn phụ
giải phương trình: 2(x-4)\(\sqrt{x-2}\)+(x-2)\(\sqrt{x+1}\)+2x-6=0
ĐKXĐ: $x \geq 2$
\(\Leftrightarrow2\left(x-4\right).\sqrt{x-2}-2\left(x-4\right)+\left(x-2\right)\sqrt{x+1}-2\left(x-2\right)+6x-18=0\\ \Leftrightarrow2.\left(x-4\right).\dfrac{x-3}{\sqrt{x-2}+1}+\left(x-2\right).\dfrac{x-3}{\sqrt{x+1}+2}+6.\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=0\right)\\ \Leftrightarrow x=3\)
Vì \(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=\dfrac{2\left(x-4\right)+4.\sqrt{x-2}+4}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2\\ =\dfrac{2\left(x-2\right)+4.\sqrt{x-2}}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2>0\)
Vậy....
Giải phương trình \(\sqrt{2x-3}+\sqrt{5-2x}-x^2+4x-6=0\)
Lời giải:
ĐKXĐ: $\frac{5}{2}\geq x\geq \frac{3}{2}$
PT $\Leftrightarrow \sqrt{2x-3}+\sqrt{5-2x}=x^2-4x+6$
Ta thấy:
$\text{VP}=x^2-4x+6=(x-2)^2+2\geq 2$
Áp dụng BĐT Bunhiacopxky:
$\text{VT}^2\leq (2x-3+5-2x)(1+1)=4\Rightarrow \text{VT}\leq 2$
Do đó:
$\text{VT}\leq 2\leq \text{VP}$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \sqrt{2x-3}=\sqrt{5-2x}\\ (x-2)^2=0\end{matrix}\right.\) hay $x=2$
Vậy.......