Điều kiện: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}=0}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=0\)
\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=0\)
Với \(\dfrac{1}{2}\le x< 1\)
\(\Leftrightarrow1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow-2\sqrt{2x-1}+6=0\)
\(\Leftrightarrow x=5\left(l\right)\)
Tương tự cho các trường hợp: \(1\le x< \dfrac{5}{2};\dfrac{5}{2}\le x< 5;x\ge5\)
Tới đây thì kết luận thôi.
\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=0\)
ĐK:\(x\ge\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{2x-1-2\sqrt{2x-1}+1}-2\sqrt{2x-1-4\sqrt{2x-1}+4}+3\sqrt{2x-1-6\sqrt{2x-1}+9}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{2x-1}-1-2\left(\sqrt{2x-1}-2\right)+3\left(\sqrt{2x-1}-3\right)=0\)
\(\Leftrightarrow\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=0\)
\(\Leftrightarrow2\sqrt{2x-1}-6=0\)\(\Leftrightarrow\sqrt{2x-1}=3\)
\(\Leftrightarrow2x-1=9\Leftrightarrow2x=10\Rightarrow x=5\) *Thỏa*