Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hương Giang
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 20:37

a)Xét ADB và tam giác AEC ta có:

`hat{AEC}=hat{ADB}=90^o`(gt)

`hat{A}` chung

`=>Delta ADB~Delta AEC(gg)`

b)Vì `Delta ADB~Delta AEC(gg)`

`=>(AB)/(AC)=(AE)/(AD)`

`=>DeltaADE~Delta ABC(cgc)`

c)

Nguyễn Lê Phước Thịnh
28 tháng 6 2021 lúc 20:40

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{A}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

b) Ta có: ΔADB∼ΔAEC(cmt)

nên \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔADE∼ΔABC(c-g-c)

trần bảo nam
Xem chi tiết
Phạm Hoàng
27 tháng 4 2018 lúc 22:06

a) VÌ D là trung điểm của AB

        E là trung điểm của AC

=>DE là đường trung bình của tg ABC

Hay DE // BC. =>tg ADE đồng dạng vs tg ABC(trong SGK có định lí đó)

b) Ta có: DE là đường trung bình của tg ABC => AD/AB = AE/AC =1/2

S tg ADE / S tg ABC = (1/2)2 =1/4

Mà S tg ADE = 4 cm2 => S tg ABC = 16 (cm)

Mặt khác: S tg ABC = (AH x BC) / 2 =>AH x BC = 32(cm)

=>AH= 32 / 8=4(cm)

Bài này dễ, chỉ cần suy nghĩ thì bạn sẽ làm đc

Thảo Linh Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2023 lúc 15:47

Xet ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>DE//BC

=>ΔADE đồng dạng với ΔABC

Hồng Nhung 2004
Xem chi tiết
Hồ Đức Dũng
3 tháng 5 2020 lúc 20:14

jdedkwYy6yju8

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
3 tháng 5 2020 lúc 20:51

đừng đăng linh tinh nha bạn

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
3 tháng 5 2020 lúc 21:12

đăng câu trả lời

Khách vãng lai đã xóa
Nguyễn Thị Kim Anh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 16:40

Vì \(\Delta ADE\backsim\Delta AMN\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}}\end{array} \right.\)

Vì \(DE\) là đường trung bình của tam giác \(AMN\)nên \(DE = \frac{1}{2}MN\)

\( \Rightarrow \left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}} = \frac{1}{2}\end{array} \right.\)

\( \Rightarrow AM = 2AD;AN = 2AE;MN = 2DE\)

Lại có, \(\Delta AMN\backsim\Delta ABC\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\end{array} \right.\)

Vì \(MN\) là đường trung bình của tam giác \(ABC\)nên \(MN = \frac{1}{2}BC\)

\(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\end{array} \right.\)

\( \Rightarrow AB = 2AM;AC = 2AN;BC = 2MN\)

Vì tam giác \(\Delta ADE\backsim\Delta AMN,\Delta AMN\backsim\Delta ABC,\) nên \(\Delta ADE\backsim\Delta ABC\)

Tỉ số đồng dạng là: \(\frac{{AD}}{{AB}} = \frac{{\frac{{AM}}{2}}}{{2AM}} = \frac{1}{4}\).

Vậy tỉ số đồng dạng là \(\frac{1}{4}\).

Phạm Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2022 lúc 22:12

a: Xét ΔABC có DE//BC

nên AD/AB=DE/BC

=>DE/10=3/5

hay DE=6(cm)

b: Xét ΔADE và ΔCGE có 

\(\widehat{ADE}=\widehat{CGE}\)

\(\widehat{AED}=\widehat{CEG}\)

Do đó: ΔADE\(\sim\)ΔCGE

Suy ra: AD/CG=AE/CE

hay \(AD\cdot CE=AE\cdot CG\)

Ngoc diem Tra
Xem chi tiết
Nguyễn Huy Tú
11 tháng 5 2022 lúc 21:19

a, Xét tam giác ADB và tam giác AEC có 

^ADB = ^AEC = 900

^DAB _ chung 

Vậy tam giác ADB ~ tam giác AEC (g.g) 

b, \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\Rightarrow AD.AC=AB.AE\)

c, \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)

Thằng Khứa
Xem chi tiết
Lưu Xuân Hưởng
Xem chi tiết
Lưu Xuân Hưởng
7 tháng 5 2015 lúc 15:39

ĐÁP ÁN BÀI HÌNH CÂU 3, 4 ĐỀ THI TOÁN 8 KỲ 2 TINH BẮC NINH NĂM HỌC 2014-2015

3. Từ ID.IE=IM2-MC= ( IM - MC ) ( IM + MC ) = IB. IC ( vì MB = MC ). Xét tam giác IDB và tam giác IEC có góc I chung, góc IDB = góc ICE ( vì phụ với hai góc bằng nhau góc ADE = góc ABC theo câu 2). suy ra tam giác IBD đồng dạng tam giác IEC(g-g). suy ra ID/IC = IB/IIE => ID.IE = IB.IC hay ID.IE=IM2-MC2.(đpcm).

4. Hạ đường cao AH cắt BC tại K. Chứng minh được tam giác BHK đồng dạng tam giác BCD và tam giác CHK đồng dạng tam giác CBE (g-g). Suy ra BH. BD = BC. BK và CH.CE = BC. CK => P = BH.BD + CH.CE = BC ( BK+CK ) = BC. BC= BC2

Thay BC = 15 vào biểu thức ta được P = BH.BD + CH.CE = 15= 225.

Na Akino
7 tháng 5 2016 lúc 13:01

giải câu 1 với câu 2 giùm em với