Biết tam giác ABC và tam giác ADE đồng dạng với nhau
Chứng minh BC // DE
Cho tam giác ABC có \(\widehat{A}=60^o\). Vẽ các đường cao BD và CE. Chứng minh rằng:
a) Tam giác ADB đồng dạng với tam giác AEC.
b) Tam giác ADE đồng dạng với tam giác ABC.
c) DE = \(\dfrac{1}{2}BC\)
a)Xét ADB và tam giác AEC ta có:
`hat{AEC}=hat{ADB}=90^o`(gt)
`hat{A}` chung
`=>Delta ADB~Delta AEC(gg)`
b)Vì `Delta ADB~Delta AEC(gg)`
`=>(AB)/(AC)=(AE)/(AD)`
`=>DeltaADE~Delta ABC(cgc)`
c)
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
b) Ta có: ΔADB∼ΔAEC(cmt)
nên \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)
Cho tam giác ABC, gọi D,E lần lượt là trung điểm của AB,AC
a)Chứng minh tam giác ADE đồng dạng với tam giác ABC
b)Kẻ AH vuông góc với DE. Biết BC = 8cm và diện tích của tam giác ADE 4cm2 . Tính độ dài của AH.
a) VÌ D là trung điểm của AB
E là trung điểm của AC
=>DE là đường trung bình của tg ABC
Hay DE // BC. =>tg ADE đồng dạng vs tg ABC(trong SGK có định lí đó)
b) Ta có: DE là đường trung bình của tg ABC => AD/AB = AE/AC =1/2
S tg ADE / S tg ABC = (1/2)2 =1/4
Mà S tg ADE = 4 cm2 => S tg ABC = 16 (cm)
Mặt khác: S tg ABC = (AH x BC) / 2 =>AH x BC = 32(cm)
=>AH= 32 / 8=4(cm)
Bài này dễ, chỉ cần suy nghĩ thì bạn sẽ làm đc
Cho tam giác ABC và đường trung tuyến AM. Tia phân giác của góc AMB cắt AB tại D, tia phân giác góc AMC cắt AC tại E. Chứng minh DE//BC và tam giác ADE đồng dạng với tam giác ABC
Xet ΔMAB có MD là phân giác
nên AD/DB=AM/MB=AM/MC
Xét ΔMAC có ME là phân giác
nên AE/EC=AM/MC
=>AD/DB=AE/EC
=>DE//BC
=>ΔADE đồng dạng với ΔABC
Cho tam giác ABC và điểm D trên cạnh AB sao cho AD=2/3DB. Qua D kẻ đường thẳng song song với BC cắt AC ở E
Chứng minh rằng tam giác ABC đồng dạng với tam giác ADE .tính tỉ số đồng dạng Tính chu vi của tam giác ADE, biết chu vi tam giác ABC =60cmđừng đăng linh tinh nha bạn
đăng câu trả lời
Cho tam giác ABC có AB = 4,5cm AC = 6cm Trên các tia AB AC lần lượt lấy các điểm D và E sao cho AD = 12cm và AE = 9 cm
a) Chứng minh tam giác ACB đồng dạng tam giác ADE
b) Gỉa sử BC = 7cm. Tính DE
c) Gọi Klà giao điểm của BC và DE. Chứng minh tam giác KCE đồng dạng tam giác KDB và góc CBE = góc CDE
Quan sát Hình 4, cho biết \(\Delta ADE\backsim\Delta AMN,\Delta AMN\backsim\Delta ABC,DE\) là đường trung bình của tam giác \(AMN,MN\) là đường trung bình của tam giác \(ABC.\) Tam giác \(ADE\) đồng dạng với tam giác \(ABC\) theo tỉ số đồng dạng là bao nhiêu?
Vì \(\Delta ADE\backsim\Delta AMN\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}}\end{array} \right.\)
Vì \(DE\) là đường trung bình của tam giác \(AMN\)nên \(DE = \frac{1}{2}MN\)
\( \Rightarrow \left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}} = \frac{1}{2}\end{array} \right.\)
\( \Rightarrow AM = 2AD;AN = 2AE;MN = 2DE\)
Lại có, \(\Delta AMN\backsim\Delta ABC\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\end{array} \right.\)
Vì \(MN\) là đường trung bình của tam giác \(ABC\)nên \(MN = \frac{1}{2}BC\)
\(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\end{array} \right.\)
\( \Rightarrow AB = 2AM;AC = 2AN;BC = 2MN\)
Vì tam giác \(\Delta ADE\backsim\Delta AMN,\Delta AMN\backsim\Delta ABC,\) nên \(\Delta ADE\backsim\Delta ABC\)
Tỉ số đồng dạng là: \(\frac{{AD}}{{AB}} = \frac{{\frac{{AM}}{2}}}{{2AM}} = \frac{1}{4}\).
Vậy tỉ số đồng dạng là \(\frac{1}{4}\).
Cho tam giác ABC biết AB=5cm, BC=10cm. Lấy điểm D trên cạnh AB sao cho AD=3cm. Qua D kẻ đường thẳng song song với BC cắt AC tại E
a.Tính độ dài DE
b. Qua C kẻ đường thẳng song song với AB cắt tia DE tại G. Chứng minh tam giác ADE đồng dạng với tam giác CGE và AD.AE=DB.DE
c. Đường thẳng BG cắt AC tại H. Chứng minh HC2 = HE. HA
a: Xét ΔABC có DE//BC
nên AD/AB=DE/BC
=>DE/10=3/5
hay DE=6(cm)
b: Xét ΔADE và ΔCGE có
\(\widehat{ADE}=\widehat{CGE}\)
\(\widehat{AED}=\widehat{CEG}\)
Do đó: ΔADE\(\sim\)ΔCGE
Suy ra: AD/CG=AE/CE
hay \(AD\cdot CE=AE\cdot CG\)
Hình học lớp 8
Cho tam giác ABC có 3 góc nhọn. Vẽ hai đường cao BD và CE (D thuộc AC, E thuộc AB)
a) Chứng minh: Tam giác ADB đồng dạng tam giác AEC
b) Chứng minh: AD. AC = AB.AE
c) Biết DE= 2cm, BC = 4cm. Tính diện tích ADE/ diện tích ABC
(Mai thi rồi cíu tôi đi 💦)
a, Xét tam giác ADB và tam giác AEC có
^ADB = ^AEC = 900
^DAB _ chung
Vậy tam giác ADB ~ tam giác AEC (g.g)
b, \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\Rightarrow AD.AC=AB.AE\)
c, \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)
cho tam giác abc vuông tại a có ab=15cm,bc=25cm.kẻ đường cao ah(h thuộc bc).a) tính độ dài ac.b) kẻ hd vuông với ac(d thuộc ac) và he vuông với ab9e thuộc ab.chứng minh tam giác ade đồng dạng với tam giác abc.c) gọi m là trung điểm của bc.chứng minh am vuông góc với de
Cho tam giác ABC có ba góc nhọn (AB<AC), hai đường cao BD và CE cắt nhau tại H.
1. Chứng minh tam giác ABD đồng dạng tam giác ACE, từ đó suy ra AB. AE = AC.AD
2. Chứng minh tam giác ADE đồng dạng tam giác ABC
3. Gọi I là giao điểm của DE và CB và M là trung điểm của BC. Chứng minh ID.IE=IM2-MC2
4. Biết BC=15. Tính P = BH.BD + CH.CE
ĐÁP ÁN BÀI HÌNH CÂU 3, 4 ĐỀ THI TOÁN 8 KỲ 2 TINH BẮC NINH NĂM HỌC 2014-2015
3. Từ ID.IE=IM2-MC2 = ( IM - MC ) ( IM + MC ) = IB. IC ( vì MB = MC ). Xét tam giác IDB và tam giác IEC có góc I chung, góc IDB = góc ICE ( vì phụ với hai góc bằng nhau góc ADE = góc ABC theo câu 2). suy ra tam giác IBD đồng dạng tam giác IEC(g-g). suy ra ID/IC = IB/IIE => ID.IE = IB.IC hay ID.IE=IM2-MC2.(đpcm).
4. Hạ đường cao AH cắt BC tại K. Chứng minh được tam giác BHK đồng dạng tam giác BCD và tam giác CHK đồng dạng tam giác CBE (g-g). Suy ra BH. BD = BC. BK và CH.CE = BC. CK => P = BH.BD + CH.CE = BC ( BK+CK ) = BC. BC= BC2
Thay BC = 15 vào biểu thức ta được P = BH.BD + CH.CE = 152 = 225.