Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tất Đạt
Xem chi tiết
pham trung thanh
4 tháng 8 2018 lúc 11:29

Câu này đã có người đăng rồi, bạn tìm lại sẽ thấy

Nguyễn Thu Ngà
Xem chi tiết
Nguyễn Huy Thắng
14 tháng 3 2019 lúc 18:05

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi

Lương Thị Ngân Hà
Xem chi tiết
Không Tên
8 tháng 8 2018 lúc 21:07

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

đến đây ez tự làm nốt nhé, ko ra ib mk

didudsui
Xem chi tiết
Kiệt Nguyễn
16 tháng 2 2020 lúc 16:03

Áp dụng bđt Cauchy - Schwarz dạng Engel:

\(VT=\frac{1}{4a}+\frac{4}{4b}+\frac{4}{4c}\ge\frac{\left(1+2+2\right)^2}{4\left(a+b+c\right)}=\frac{25}{4}\)

(Dấu "=" xảy ra khi \(a=\frac{1}{5};b=c=\frac{2}{5}\))

Khách vãng lai đã xóa
ღŦëą๓ ₣ɾëë ₣เɾëღ
16 tháng 2 2020 lúc 21:11

Ai muốn vào team tui không

Xin lỗi rất nhiều vì đã làm sai quy luật, nội quy ạ

Mong mọi người đừng chửi

Học Tốt

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tran Le Khanh Linh
21 tháng 7 2020 lúc 20:11

a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)

Dấu "=" xảy ra <=> a=b

Áp dụng BĐT (*) vào bài toán ta có:

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tiếp tục áp dụng BĐT (*) ta có:

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
21 tháng 7 2020 lúc 20:17

b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:

\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)

Cộng theo vế 3 BĐT ta có:

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra <=> a=b=c

Khách vãng lai đã xóa
Kiệt Nguyễn
21 tháng 7 2020 lúc 20:09

a) 

Áp dụng BĐT Bunyakovsky dạng phân thức

b)

Áp dụng BĐT \(\frac{1}{m}+\frac{1}{n}\ge\frac{4}{m+n}\)

c)

Viết giả thiết lại thành \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)sau đó làm như câu a

EZ game

Khách vãng lai đã xóa
Hello Hello
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Thanh Tùng DZ
1 tháng 12 2019 lúc 22:16

Áp dụng : x + y + z = 0 suy ra x3 + y3 + z3 = 3xyz

1/a + 1/2b + 1/3c = 0 = >... rồi biến đổi nhé

Khách vãng lai đã xóa
Diệu Anh Bùi
Xem chi tiết
Nguyễn Hoàng
19 tháng 2 2020 lúc 22:39

Áp dụng bđt Cauchy-schwarz dạng engel ta có:

1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)

Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)

2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)

Dấu "=" \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
hung
Xem chi tiết