Tính giá trị biểu thức:
B=x7 - 26x6 + 27x5 - 47x4 - 73x3 + 50x2 + x - 24
tại x = 25
Cho C= x7-26x6+27x5-47x4-77x3+50x2+x-24
tính C khi x=25
Thay x = 25 vào C, ta có:
\(C=25^7-26\cdot25^6+27\cdot25^5-47\cdot25^4-77\cdot25^3+50\cdot25^2+25-24=-28144\)
Bài 3: Tính giá trị của biểu thức sau bằng cách hợp lý:
a/ A = x5 – 100x 4 + 100x3 – 100x2 + 100x – 9 với x = 99
b/ B = x6 – 20x5 – 20x4 – 20x3 – 20x2 – 20x + 3 với x = 21
c/. C = x7 – 26x6 + 27x5 -47x4 – 77x3 + 50x2 + x – 24 với x = 25
P=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
S=xy=x(201−x)" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
1≤x≤200" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
S=200−(x−1)(x−200)≥0⇒Smin=200" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
x≤y⇒x≤100" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
S=100.101−(x−100)(x−101)≤100.101⇒Smax=100.101" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
Tìm giá trị nhỏ nhất của biểu thức:
B= \(\dfrac{2x^{2^{ }}-12x+25}{x^{2^{ }}-6x+12}\)
\(B=\dfrac{2x^2-12x+25}{x^2-6x+12}=\dfrac{2\left(x^2-6x+12\right)+1}{x^2-6x+12}=2+\dfrac{1}{x^2-6x+9+4}=2+\dfrac{1}{\left(x-3\right)^2+4}\le2+\dfrac{1}{4}=\dfrac{9}{4}\)
Không có min nha bạn . Chỉ có max thôi
Dấu = xảy ra khi x=3
Tính giá trị biểu thức:
B = x - y - (-18) với x = -40 và y = -54
B=x-y-(-18)=x-y+18
Khi x=-40 và y=-54 thì \(B=-40-\left(-54\right)+18\)
\(=-40+54+18\)
=14+18
=32
tính giá trị biểu thức:
B=8x^3+12x^2+6x+1 tại x=1/2
\(B=8x^3+12x^2+6x+1\)
\(=8\left(\dfrac{1}{2}\right)^3+12\left(\dfrac{1}{2}\right)^2+6.\dfrac{1}{2}+1\)
\(=8.\dfrac{1}{8}+12.\dfrac{1}{4}+3+1\)
\(=1+3+4\)
\(=8\)
Để tính giá trị của biểu thức B=8x^3+12x^2+6x+1 tại x=1/2, ta thay giá trị này vào biểu thức.
B = 8(1/2)^3 + 12(1/2)^2 + 6(1/2) + 1
= 8(1/8) + 12(1/4) + 6(1/2) + 1
= 1 + 3 + 3 + 1
= 8
Vậy, giá trị của biểu thức B tại x=1/2 là 8.
Thay \(x=\dfrac{1}{2}\) vào biểu thức trên , ta có :
\(B=\)\(8.\left(\dfrac{1}{2}\right)^3+12.\left(\dfrac{1}{2}\right)^2+6.\dfrac{1}{2}+1\)
\(=8.\dfrac{1}{8}+12.\dfrac{1}{4}+6.\dfrac{1}{2}+1\)
\(=1+3+3+1\)
\(=4+4\)
\(=8\)
Vậy khi \(x=\dfrac{1}{2}\) thì \(B=8\)
Cho biểu thức:
B = (\(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\)) : (\(1-\dfrac{x-3}{x+1}\))
a) Tìm điều kiện của x để giá trị của biểu thức được xác định
b) Tính giá trị của biểu thức B với x = 2005
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)
\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)
\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)
\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{1}{2}\)
Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)
a/
Để biểu thức được xác định
\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)
\(\odot2x-2\ne0\)
\(2x\ne2\)
\(x\ne1\)
\(\odot2x+2\ne0\)
\(2x\ne-2\)
\(x\ne-1\)
\(\odot x+1\ne0\)
\(x\ne-1\)
Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)
Tính giá trị của biểu thức:
B\(=\)\(2x^5\) - \(5y^3\)+ 4 biết \(\left(x-1\right)^2\)+\(\left(y+2\right)^2\)\(=\)\(0\)
Ta có:
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Do: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Mặt khác: \(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Thay vào B ta có:
\(B=2\cdot1^5-5\cdot\left(-2\right)^3+4=2\cdot1-5\cdot-8+4=2+40+4=46\)
a,Cho x+y=3.Tính giá trị biểu thức:A=x2+2xy+y2-4x-4y+1
b,Cho x-y=7.Tính giá trị biểu thức:B=x(x+2)+y(y-2)-2xy+37
c,Cho x+2y=5.Tính giá trị biểu thức:C=x2+4y2-2x+10+4xy-4y
Mk đang cần gấp nên ai nhanh mk cho 2 tick
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
Tính giá trị biểu thức:B=\(\left(x^2-1\right)\left(x^2-2\right)....\left(x^2-2013\right)\)tại x=10
\(\left(x^2-1\right)\left(x^2-2\right)...\left(x^2-2013\right)\)
Thay x = 10 vào biểu thức, ta được:
\(\Rightarrow\left(10^2-1\right)\left(10^2-2\right)...\left(10^2-100\right)....\left(10^2-2013\right)\)
\(\Rightarrow\left(10^2-1\right)\left(10^2-2\right)...0....\left(10^2-2013\right)=0\) (vì bao nhiêu nhân 0 cũng bằng 0)
Bài 1:Tìm giá trị lớn nhất của biểu thức:A=37 - |x - 8| với x thuộc Z
Bài 2:Tìm giá trị lớn nhất của biểu thức:B=1999 - |x + 2|
Bài 1:
Ta có |x-8| > 0 với mọi x
=>A=37-|x-8| > 37 với mọi x
Vậy GTLN của A=37 với x-8=0 =>x=8
Bài 2 tương tự nhé
Học tốt :))