Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Phan Hưng
Xem chi tiết
Phạm Chí Thiện
19 tháng 11 2024 lúc 20:48

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

nguyenaiphuong2005
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 16:00

\(a,=2x\left(x+3\right)\\ b,=x^3\left(x+3\right)+\left(x+3\right)=\left(x^3+1\right)\left(x+3\right)\\ =\left(x+1\right)\left(x+3\right)\left(x^2-x+1\right)\\ c,=64-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\\ A=x^2+6x+5+x^3-8-x^2-x+2\\ A=x^3+5x-1\)

Trường Nguyễn Công
23 tháng 11 2021 lúc 16:14

a) 2x2+6x=2x(x+3)
b) x4+3x3+x+3=(x4+x)+(3x3+3)=x(x3+1)+3(x3+1)=(x+3)(x3+1)
c) 64-x2-y2+2xy=-(x2-2xy+y2)+82=8-(x+y)2=(8+x+y)(8-x-y)

A= (x+5)(x+1)+(x-2)(x2+2xx+4)-(x2+x-2)
A= x2+6x+5+x3-8-x2-x+2
A= x3+(x2-x2)+(6x-x)+(5-8+2)
A= x3+5x-1

nnkh2010
Xem chi tiết
Toru
13 tháng 1 2024 lúc 8:35

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

Toru
13 tháng 1 2024 lúc 8:45

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.

nghia
Xem chi tiết
Kiều Vũ Linh
10 tháng 12 2023 lúc 13:11

a) x² + 6x + 8

= x² + 2x + 4x + 8

= (x² + 2x) + (4x + 8)

= x(x + 2) + 4(x + 8)

= (x + 2)(x + 4)

b) 3x² - 2(x - y)² - 3y²

= (3x² - 3y²) - 2(x - y)²

= 3(x² - y²) - 2(x - y)²

= 3(x + y)(x - y) - 2(x - y)²

= (x - y)[3(x + y) - 2(x - y)]

= (x - y)(3x + 3y - 2x + 2y)

= (x - y)(x + 5y)

c) 4x² - 9y² + 4x - 6y

= (4x² - 9y²) + (4x - 6y)

= (2x - 3y)(2x + 3y) + 2(2x - 3y)

= (2x - 3y)(2x + 3y + 2)

d) x(x + 1)² + x(x - 5) - 5(x + 1)²

= [x(x + 1)² - 5(x + 1)²] + x(x - 5)

= (x + 1)²(x - 5) + x(x - 5)

= (x - 5)[(x + 1)² + x]

= (x - 5)(x² + 2x + 1 + x)

= (x - 5)(x² + 3x + 1)

e) 2xy - x² + 3y² - 4y + 1

= -x² + 2xy - y² + 4y² - 4y + 1

= -(x² - 2xy + y²) + (4y² - 4y + 1)

= -(x - y)² + (2y - 1)²

= (2y - 1)² - (x - y)²

= (2y - 1 - x + y)(2y - 1 + x - y)

= (3y - x - 1)(x + y - 1)

f) 4x¹⁶ + 81

= (2x⁸)² + 2.2x⁸.9 + 9² - 2.2x⁸.9

= (2x⁸ + 9)² - 36x⁸

= (2x⁸ + 9) - (6x⁴)²

= (2x⁸ + 9 - 6x⁴)(2x⁸ + 9 + 6x⁴)

= (2x⁸ - 6x⁴ + 9)(2x⁸ + 6x⁴ + 9)

Lưu huỳnh ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 15:09

1: \(6x^2y-9xy^2+3xy\)

\(=3xy\left(2x-3y+1\right)\)

2: \(\left(4-x\right)^2-16\)

\(=\left(4-x-4\right)\left(4-x+4\right)\)

\(=-x\cdot\left(8-x\right)\)

3: \(x^3+9x^2-4x-36\)

\(=x^2\left(x+9\right)-4\left(x+9\right)\)

\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)

ILoveMath
14 tháng 8 2021 lúc 15:10

1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)

2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)

3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)

nghia
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2023 lúc 22:01

b: =x^3+2x^2-x^2+4

=x^2(x+2)-(x+2)(x-2)

=(x+2)(x^2-x+2)

c: =x^3-2x^2+x^2-4

=x^2(x-2)+(x-2)(x+2)

=(x-2)(x^2+x+2)

d: =(x-y)(x+y)-7(x+y)

=(x+y)(x-y-7)

Trang Kieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 20:58

2:

a: \(x^2-12x+20\)

\(=x^2-2x-10x+20\)

=x(x-2)-10(x-2)

=(x-2)(x-10)

b: \(2x^2-x-15\)

=2x^2-6x+5x-15

=2x(x-3)+5(x-3)

=(x-3)(2x+5)

c: \(x^3-x^2+x-1\)

=x^2(x-1)+(x-1)

=(x-1)(x^2+1)

d: \(2x^3-5x-6\)

\(=2x^3-4x^2+4x^2-8x+3x-6\)

\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(2x^2+4x+3\right)\)

e: \(4y^4+1\)

\(=4y^4+4y^2+1-4y^2\)

\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)

\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)

f; \(x^7+x^5+x^3\)

\(=x^3\left(x^4+x^2+1\right)\)

\(=x^3\left(x^4+2x^2+1-x^2\right)\)

\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)

\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)

\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)

h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)

\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)

\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-4\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)

\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)

\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)

i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)

\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)

\(=\left(x+2y-1\right)\left(x+2y-3\right)\)

j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)

\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)

\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)

\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)

Ngọc Đậu Nguyễn Yến
Xem chi tiết
Không Tên
12 tháng 8 2018 lúc 14:55

a)  \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)

b)  \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)

\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)

\(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

Trần Linh
Xem chi tiết
Dũng Lê Trí
19 tháng 8 2019 lúc 16:57

a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)

\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)

c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

Dũng Lê Trí
19 tháng 8 2019 lúc 17:02

b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)