Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
zZz Cool Kid_new zZz
26 tháng 12 2019 lúc 23:49

Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.

Khách vãng lai đã xóa
tth_new
27 tháng 12 2019 lúc 7:32

Thấy có lời giải này hay hay nên mình copy lại nha (Trong sách Yếu tố ít nhất - Võ Quốc Bá Cẩn)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
29 tháng 12 2019 lúc 23:39

Một tài liệu khác cũng có kết quả với hướng làm giống thầy Cần:

Khách vãng lai đã xóa
tth_new
Xem chi tiết
Hermione Granger
1 tháng 6 2020 lúc 14:20

ê

Nguyễn Viết Gia Bảo
1 tháng 6 2020 lúc 18:48

bởi vì abc là  một số thập phân 

Khách vãng lai đã xóa

🏃

Châu Hà
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
5 tháng 1 2020 lúc 11:21

\(BĐT\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

Áp dụng BĐT Bunhi kết hợp với Nesbit :

\(VT=\left(\sqrt{a}^2+\sqrt{b}^2+\sqrt{c}^2\right)\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{c+a}\right)^2+\left(\frac{\sqrt{c}}{a+b}\right)^2\right]\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

Vậy BĐT đc chứng minh . Dấu bằng xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Linh Châu
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2020 lúc 15:24

a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

Nguyễn Việt Lâm
30 tháng 6 2020 lúc 15:30

d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)

\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)

KCLH Kedokatoji
Xem chi tiết
Nguyễn Linh Chi
27 tháng 2 2020 lúc 15:57

Bất đẳng thức

<=> \(\frac{a\left(a+b+c\right)}{\left(b+c\right)^2}+\frac{b\left(a+b+c\right)}{\left(c+a\right)^2}+\frac{c\left(a+b+c\right)}{\left(a+b\right)^2}\ge\frac{9}{4}\)

VT = \(\left(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(a+c\right)^2}+\frac{c^2}{\left(a+b\right)^2}\right)+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\ge\frac{1}{3}.\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)^2+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

lại có:

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\)

=> VT\(\ge\frac{1}{3}.\left(\frac{3}{2}\right)^2+\frac{3}{2}=\frac{9}{4}\)

Dấu "=" xảy ra <=> a = b = c.

Khách vãng lai đã xóa
Nguyễn Linh Chi
27 tháng 2 2020 lúc 16:05

Hoặc em có thể áp dụng Bunhia

bất đẳng thức 

<=> \(\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

VT\(\ge\left(\frac{a}{b+c}+\frac{c}{a+b}+\frac{b}{a+c}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

Khách vãng lai đã xóa
KCLH Kedokatoji
27 tháng 2 2020 lúc 16:08

Cảm ơn chị

Khách vãng lai đã xóa
Nano Thịnh
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
tth_new
26 tháng 4 2020 lúc 9:21

\(\Leftrightarrow\left(\Sigma a\right)^4\left(\Sigma a^4b^4\right)\left[\Sigma c^2\left(a^2+b^2\right)^2\right]\ge54^2\left(abc\right)^6\)

Giả sử \(c=\text{min}\left\{a,b,c\right\}\)và đặt \(a=c+u,b=c+v\) thì nhận được một BĐT hiển nhiên :P

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 4 2020 lúc 10:34

Theo BĐT AM-GM ta có:

\(c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)\ge3\sqrt[3]{\left(abc\right)^2\left[\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\right]^2}\)

\(\ge3\sqrt[3]{\left(abc\right)^264\left(abc\right)^4}=12\left(abc\right)^2\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(a^2+c^2\right)^2}\ge2\sqrt{3}abc\)

Cũng theo BĐT AM-GM \(\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\ge3\sqrt[3]{\left(ab\right)^4\left(bc\right)^4\left(ca\right)^4}=3\left(abc\right)^2\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\ge\sqrt{3}\cdot abc\sqrt[3]{abc}\)và \(\left(a+b+c\right)^2\ge9\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\cdot\left(a+b+c\right)^2\cdot\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\)

\(\ge2\sqrt{3}\left(abc\right)\cdot\sqrt{3}\left(abc\right)\sqrt[3]{abc}\cdot9\sqrt[3]{\left(abc\right)^2}\ge54\left(abc\right)^3\)

Dấu "=" xảy ra <=> a=b=c

Khách vãng lai đã xóa
trương đức minh
23 tháng 5 2020 lúc 21:40

\(\hept{\begin{cases}54&A,B,C^2&\end{cases}}\)\(\sqrt[54]{454}.A.B.C\)\(\sqrt{AB^4+BC^4+CA^4}\)\(\Rightarrow AB=CA=BC^4\)nên ta sẽ lại là 54abc3

vậy suy ra  \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) ta =\(\notin54\) chả việc gì dài dòng cả

Khách vãng lai đã xóa
Nhi Ngải Thiên
Xem chi tiết
2611
27 tháng 4 2022 lúc 20:47

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

fghj
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2020 lúc 14:27

\(VT=\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\)

\(VT\ge\frac{1}{3}\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)