Cho điểm B(-1,3) và đường thẳng (d) :x+y-2=0. a) viết ptđt có tâm I(3;6) và đi qua điểm B. b)Viết ptđt đenta vuông góc với đường thẳng d và cắt 2 trúc tọa độ tại 2 điểm M,N sao cho diện tích tam giác BMN =5/2
1.
Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)
2.
\(\overrightarrow{MI}=\left(1;-2\right)\)
Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt
Phương trình:
\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)
cho đường thẳng d : 3x-y+5=0 và đường tròn (c) : (x-1) ² +(y-3) ² =25
1/ Viết ptđt d' đi qua A (1;-3) và tiếp xúc với (c)
2/ Tìm tọa độ điểm H là hình chiếu vuông góc của I lên d
3/ Viết ptđt đi qua điểm B(5;6) và cắt (c) tại 2 điểm M,N sao cho MN = √5
Tronh hệ trực Oxy cho điểm I(1,3) và đường thẳng d: 3x+4y+5=0 a) viết PTTQ đường thẳng qua I và song song với d b) viết phương trình đường tròn tâm I và tiếp xúc với d
`a)` Gọi đường thẳng `\Delta` song song với `d` là: `3x+4y+c=0` `(c ne 5)`
Mà `I in \Delta`
`=>2.1+4.3+c=0<=>c=-14` (t/m)
`=>PTTQ` của `\Delta` là: `3x+4y-14=0`
`b)` Có: `R=d(I;d)=[|3.1+4.3+5|]/[\sqrt{3^2+4^2}]=4`
`=>` Ptr đường tròn tâm `I` bán kinh `R=4` là:
`(x-1)^2+(y-3)^2=16`
trong mặt phẳng Oxy, cho điểm I (1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm A,B sao cho AB=2
gọi H là trung điểm AB
=>IH⊥AB
=>\(d_{\left(I,d\right)}=\dfrac{\left|1\cdot1-1\cdot1+2\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
=>IH=\(\sqrt{2}\)
Mà HB=\(\dfrac{AB}{2}\)=1
Xét ΔIHB vuông tại H có:
IB=\(\sqrt{IH^2+HB^2}=\sqrt{2+1}=\sqrt{3}\)
=>R=\(\sqrt{3}\)
Vậy đường tròn tâm I (1; -1); R=\(\sqrt{3}\) là:
(x-1)2+(y+1)2=3
trong mặt phẳng Oxy, cho điểm I (1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm A,B sao cho AB=2
REFER
https://hoc24.vn/index.php/cau-hoi/trong-mat-phang-oxy-cho-diem-i-1-1-va-duong-thang-d-xy20-viet-phuong-trinh-duong-tron-tam-i-cat-d-tai-hai-diem-ab-sao-cho-ab2.5543217878093
Trong mặt phẳng Oxy, cho điểm I(-1;1) và đường thẳng d: x+y+2=0.Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A,B sao cho AB=2
\(d\left(I;d\right)=\dfrac{\left|-1+1+2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)
Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;d\right)=\sqrt{2}\)
Áp dụng định lý Pitago:
\(R^2=IA^2=IH^2+AH^2=IH^2+\left(\dfrac{AB}{2}\right)^2=3\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-1\right)^2=3\)
Cho điểm A(-3;-1), B(2;1), đường thẳng d: x-y+1=0.
a. Tính khoảng cách từ A, B đến đường thẳng d.
b. Viết pt đường thẳng d1 đi qua A và vuông góc với d.
c. Viết phương trình đthẳng d2 đi qua B và song song với d.
d. Viết pt đường tròn (C) có tâm I thuộc d và đi qua 2 điểm A, B
Câu 1: cho sin a = -\(\dfrac{3}{5}\) và \(\pi\) < a< \(\dfrac{3\pi}{2}\) . Tính giá trị sin (a +\(\dfrac{\pi}{3}\))
Câu 2: Trong mặt phẳng Oxy, cho điểm I ( 1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A, B sao cho AB= 2
giúp mk vs nhé!
1.
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{4}{5}\)
\(\Rightarrow sin\left(\alpha+\dfrac{\pi}{3}\right)=sin\alpha.cos\dfrac{\pi}{3}+cos\alpha.sin\dfrac{\pi}{3}\)
\(=-\dfrac{3}{5}.\dfrac{1}{2}-\dfrac{4}{5}.\dfrac{\sqrt{3}}{2}\)
\(=-\dfrac{15+8\sqrt{3}}{20}\)
2.
Gọi H là chân đường vuông góc từ I đến AB \(\Rightarrow AH=1\)
Ta có: \(IH=d\left(I;d\right)=\dfrac{ \left|1-1+2\right|}{\sqrt{2}}=\sqrt{2}\)
Khi đó: \(R=IA=\sqrt{IH^2+AH^2}=\sqrt{1+4}=\sqrt{5}\)
Phương trình đường tròn:
\(\left(x-1\right)^2+\left(y+1\right)^2=5\)
Làm lại đây nha, mình nhầm đoạn cuối một tí.
Viết phương trình của đường tròn (C) trong mỗi trường hợp sau:
a) Có tâm I(-2; 5) và bán kính R= 7;
b) Có tâm I(1;-2) và đi qua điểm A(-2, 2);
c) Có đường kính AB, với A(-1; -3), B(-3; 5);
d) Có tâm I(1; 3) và tiếp xúc với đường thẳng x+2y +3 = 0.
a) Phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 2} \right)^2} + {\left( {y - 5} \right)^2} = 49\).
b) Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {2 - \left( { - 2} \right)} \right)}^2}} = 5\)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
c) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( { - 2;1} \right)\)
Bán kính đường tròn là: \[R = IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( { - 3 - 1} \right)}^2}} = \sqrt {17} \]
Phương trình đường tròn là: \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 17\)
d) Bán kính đường tròn là: \(R = \frac{{\left| {1 + 2.3 + 3} \right|}}{{\sqrt {{1^2} + {2^2}} }} = 2\sqrt 5 \)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 20\)