Cho tam giác ABC nhọn, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB, F thuộc AB. Qua E kẻ EG vuông góc với AC, G thuộc AC. Chứng minh: a) AD. AE = AB. AGAC. AF. b) FG // BC.
Cho tam giác nhọn ABC, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB (F thuộc AB); qua E kẻ EG vuông góc với AC. Chứng minh:
a) A D . A E = A B . A G = A C . AF;
b) FG song song với BC
cho tam giác ABC, 2đường cao BD và CE. qua D kẻ DF vuông góc AB (F thuộc AB ), qua E kẻ EG vuông góc AC .chứng minh
a,AD.AE=AB.AG=AC.AF
b,EF//BC
mình thích toán nhưng ko đồng ngĩa là mình giỏi toán
a, Xét 4 tam giác AFD, AGE, ADB, AEC có:
\(\widehat{A}\) chung
\(\widehat{AFD\:}=\widehat{AGE}=\widehat{ADB}=\widehat{AEC}=90^o\) (Do DF, EG, CE, BD là các đường cao của \(\Delta\)ABC)
\(\Rightarrow\) AFD ~ AGE ~ ADB ~ AEC (gg)
Từ đó suy ra các cạnh tương ứng tỉ lệ rồi suy ra đpcm
b, Vì CE, DF là các đường cao ứng với AB (gt)
\(\Rightarrow\) E, F \(\in\) AB
\(\Rightarrow\) EF không // với BC (Đề sai)
Chúc bn học tốt!
Bài 12: Cho hình thang ABCD có hai đáy là AB và CD, M là trung điểm của AB, O là giao điểm của AB và CD. OM cắt CD tại N. Chứng minh N là trung điểm CD.
Bài 13: Cho tam giác nhọn ABC, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB (F∈ AB); qua E kẻ EG vuông góc với AC. Chứng minh:
a) AD.AE=AB.AG=AC.AF
b) FG song song với BC.
cho tam giác ABC vuông tại A có AB<AC lấy E thuộc CB sao cho CA=CE qua E kẻ đường vuông góc với BC cắt AB tại D a, chứng minh CD vuông với AE b, lấy F thuộc tia đối của AC sao cho AF=EB chứng minh 3 điểm EDF thẳng hàng
a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có
CD chung
CA=CE
=>ΔCAD=ΔCED
=>CA=CE và DA=DE
=>CD là trung trực của AE
=>CD vuông góc AE
b: Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
AF=EB
=>ΔDAF=ΔDEB
=>góc ADF=góc EDB
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
Cho tam giác nhọn ABC : BD và CE là đường cao. Từ D kẻ DF sao cho DF vuông góc AB, từ E kẻ EG sao cho vuông góc AC.
a) CM : AD.AE=AB.AG=AC.AF
b) CM : FG // BC
a) \(\Delta\)AGE và \(\Delta\)ADB vuông có ^A chung nên \(\Delta AGE~\Delta ADB\)
\(\Rightarrow\frac{AG}{AD}=\frac{AE}{AB}\Rightarrow AG.AB=AD.AE\)(1)
\(\Delta\)AFD và \(\Delta\)AEC vuông có ^A chung nên\(\Delta AFD~\Delta AEC\)
\(\Rightarrow\frac{AF}{AE}=\frac{AD}{AC}\Rightarrow AF.AC=AE.AD\)(2)
Từ (1) và (2) suy ra AD.AE = AB.AG = AC.AF (đpcm)
b) Ta đã chứng minh AB.AG = AC.AF (câu a)
\(\Rightarrow\frac{AG}{AC}=\frac{AF}{AB}\)
\(\Rightarrow FG//BC\)(Theo định lý Thales đảo)
Vậy FG // BC (đpcm)
cho tam giác ABC nhọn (AB<AC). BD, CE vuông góc với phân giác trong có A tại D và E. Đường thẳng đi qua D vuông góc với AB cắt đường thẳng đi qua E vuông góc với AB tại F. Chứng Minh AF vuông góc với BC
Cho tam giác ABC nhọn có AB>AC. Kẻ các đường cao BD,CE. Lấy điểm F thuộc AB sao cho AF=AC. Kẻ FI vuông góc ở I.
a) so sánh FI và CE
b) kẻ FH vuông góc BD ở G. Chứng minh FI=HD
c) chứng minh AB-AC>BD-CE.
Cho tam giác ABC can tại A
a) Trên cạnh BC lấy lần lượt điểm D, E sao cho BD=CE (BD<BC/2). Chứng minh: AD=AE
b) Kẻ DF Vuông góc AB tại F, EG vuông góc AC tại G. Chứng minh: tam giác BDF=tam giác CEG
tự vẽ hình nhé
a, xét tam giác abd và tam giác ace có
ab=ac(gt)
góc abd=góc ace(tam giác abc cân)
bd=ce(gt)
=>tam giác abd =tam giác ace (cgc)
=>ad=ae(2 cạnh tg ứng)
b,xét tam giác bdf và tam giác ceg có
bd=ce(gt)
góc fbd=góc gce(tam giác abc cân, f thuộc ab,g thuộc ac)
=>tam giác bdf=tam giác ceg(cạnh huyện góc nhọn)
=>
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm