Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
1) Cho tam giác ABC phân giác AD. Qua D dựng đường thẳng song song với AB đường thẳng này cắt AC tại E. Qua E dựng đường thẳng song song với BC đường thẳng này cắt AB tại F. a) chứng minh AE=AF, b) Xác định hình dạng của tam giác ABC trong trường hợp E là trung điểm AC.
2) Cho hình bình hành ABCD. Từ B kẻ BH vuông góc với AC. Gọi M,N,P,Q lần lượt là trung điểm của AH,AB,NB,BC. a) MP=1/2 NC. b) chứng minh BM vuông góc với NQ.
3) cho tam giác ABC, các đường thẳng AP,AQ theo thứ tự vuông góc với phân giác trong và phân giác ngoài góc B. Các đoạn thẳng AR, AS vuông góc phân giác trong và phân giác ngoài góc C. a) chứng minh APBQ, ÁC là hình chữ nhật, b) Q,R,P,S thẳng hàng, c) QS=1/2 (AB+BC+AC)
Bài 1: Cho một tam giác ABC với ba góc nhọn, trong đó góc A = 60º. Lấy D là điểm bất kỳ trên cạnh BC. Gọi E, F lần lượt là điểm đối xứng của D qua cạnh AB, AC. EF cắt AB và AD theo thứ tự tại M, N.
a/ Chứng minh AE=AF, tính góc EAF
b/Chứng minh AD là đường phân giác tam giác DMN.
Bài 2: Cho tam giác ABC, các phân giác BD và CE cắt nhau tại O. Qua E vẽ đường vuông góc với BD và CE, chúng cắt BC theo thứ tự tại F, G. Gọi I là chân đường vuông góc hạ từ O xuống BC. Chứng minh F, G đối xứng nhau qua trục
Bài 1: Cho một tam giác ABC với ba góc nhọn, trong đó góc A = 60º. Lấy D là điểm bất kỳ trên cạnh BC. Gọi E, F lần lượt là điểm đối xứng của D qua cạnh AB, AC. EF cắt AB và AD theo thứ tự tại M, N.
a/ Chứng minh AE=AF, tính góc EAF
b/Chứng minh AD là đường phân giác tam giác DMN.
Bài 2: Cho tam giác ABC, các phân giác BD và CE cắt nhau tại O. Qua E vẽ đường vuông góc với BD và CE, chúng cắt BC theo thứ tự tại F, G. Gọi I là chân đường vuông góc hạ từ O xuống BC. Chứng minh F, G đối xứng nhau qua trục OI.
Cho tam giác ABC nhọn (AB < AC), O là trung điểm của đường cao AH; D, E lần lượt là hình chiếu của H lên AB, AC. Đường thẳng đi qua D vuông góc với OD cắt đường thẳng đi qua E vuông góc với OE tại I; AI cắt cắt BC tại M. Chứng minh: M là trung điểm của BC
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng.
2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
Cho tam giác ABC nhọn, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB, F thuộc AB. Qua E kẻ EG vuông góc với AC, G thuộc AC. Chứng minh: a) AD. AE = AB. AGAC. AF. b) FG // BC.
Cho tam giác ABC vuông cân tại A, điểm H thuộc cạnh AC. Đường thẳng đi qua A và vuông góc với BH cắt BC ở D. Lấy điểm E thuộc đoạn DB sao cho DE = DC. Đường thẳng đi qua E và vuông góc với BH cắt AB ở K. Chứng minh rằng AK = AH. (Gợi ý: trên tia đối của tia AB lấg F sao cho AK = AF.)
cho tam giác ABC vuông tại A có AB<AC lấy E thuộc CB sao cho CA=CE qua E kẻ đường vuông góc với BC cắt AB tại D a, chứng minh CD vuông với AE b, lấy F thuộc tia đối của AC sao cho AF=EB chứng minh 3 điểm EDF thẳng hàng