\(2^{x+1}.3^x-6^x=216\)
2^(x+1)×3^x-6^x=216
2^(x+1)×3^x-6^x=216
2x+1.3x-6x=216
tìm x
ai nhanh nhất mình chọn cho .mình đang gấp lắm
318-5 (x-64)=103
4mũ x . 5 +216=296
376-6 mũ x :3=364
(4x -1) mũ 2=121
\(318-5\left(x-64\right)=103\)
\(\Rightarrow5\left(x-64\right)=318-103\)
\(\Rightarrow5\left(x-64\right)=215\)
\(\Rightarrow x-64=43\)
\(\Rightarrow x=43+64\)
\(\Rightarrow x=107\)
_____________
\(4^x\cdot5+216=296\)
\(\Rightarrow4^x\cdot5=296-216\)
\(\Rightarrow4^x\cdot5-80\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
___________
\(376-6^x:3=364\)
\(\Rightarrow6^x:3=376-364\)
\(\Rightarrow6^x:3=12\)
\(\Rightarrow6^x=36\)
\(\Rightarrow6^x=6^2\)
\(\Rightarrow x=2\)
___________
\(\left(4x-1\right)^2=121\)
\(\Rightarrow\left(4x-1\right)^2=11^2\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=11\\4x-1=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=12\\4x=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Tìm x thuộc N biết :
a) 3^x - 3^x+3 = -234
b) 2^2x+1 + 4^x+3 =264
c) 2^x+1 . 3^x-6^x=216
d) 9^x-3^x=702
4 mũ n = 4096
5 mũ n = 15625
4 mũ n-1 = 1024
6 mũ n +3 = 216
X mũ 2 = x mũ 3
3 mũ x-1 = 27
3 mũ x+1 = 9
6 mũ x + 1 = 36
3 mũ 2x+1=27
X mũ 50= x
Tìm STN n
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
4ⁿ = 4096
4ⁿ = 4⁶
n = 6 (nhận)
Vậy n = 6
--------------------
5ⁿ = 15625
5ⁿ = 5⁶
n = 6 (nhận)
Vậy n = 6
--------------------
4ⁿ⁻¹ = 1024
4ⁿ⁻¹ = 4⁵
n - 1 = 5
n = 6 (nhận)
Vậy n = 6
-------------------
6ⁿ⁺³ = 216
6ⁿ⁺³ = 6³
n + 3 = 3
n = 0 (nhận)
Vậy n = 0
--------------------
x² = x³
x³ - x² = 0
x(x² - 1) = 0
x = 0 (nhận) hoặc x² - 1 = 0
*) x² - 1 = 0
x² = 1
x = 1 (nhận) hoặc x = -1 (loại)
Vậy x = 0; x = 1
--------------------
3ˣ⁻¹ = 27
3ˣ⁻¹ = 3³
x - 1 = 3
x = 3 + 1
x = 4 (nhận)
Vậy x = 4
---------------------
3ˣ⁺¹ = 9
3ˣ⁺¹ = 3²
x + 1 = 2
x = 2 - 1
x = 1 (nhận)
Vậy x = 1
--------------------
6ˣ⁺¹ = 36
6ˣ⁺¹ = 6²
x + 1 = 2
x = 2 - 1
x = 1 (nhận)
Vậy x = 1
--------------------
3²ˣ⁺¹ = 27
3²ˣ⁺¹ = 3³
2x + 1 = 3
2x = 3 - 1
2x = 2
x = 1 (nhận)
Vậy x = 1
--------------------
x⁵⁰ = x
x⁵⁰ - x = 0
x(x⁴⁹ - 1) = 0
x = 0 (nhận) hoặc x⁴⁹ - 1 = 0
*) x⁴⁹ - 1 = 0
x⁴⁹ = 1
x = 1 (nhận)
Vậy x = 0; x = 1
a) 3^x - 3^x+3 = -234
b) 2^x+1 . 3^x-6^x=216
Mình đang cần gấp ai đúng mình tick cho nha <3 thanksssss
3^x (1-3^3) = -234
3^x(-26) = -234
3^x = 9
=> x =2
b/2. 2^x. 3^x - 6^x = 216
2. 6^x - 6^x = 216
6^x = 216
x = 3
Tìm x biết:
2x+1 × 3x - 6x =216
9x + 3x = 702
a) \(2^{x+1}\times3^x-6^x=216\)
\(2^{x+1}\times3^x-2^x\times3^x=216\)
\(2^x\times3^x\times\left(2^1-1\right)=216\)
\(2^x\times3^x=216\)
\(6^x=6^3\Rightarrow x=3\)
b) \(9^x+3^x=702\)
\(3^x\times3^x+3^x=702\)
\(3^x\times\left(3^x+1\right)=26\times27\)
=> 3x = 26 => x thuộc tập hợp rỗng
Tìm x :
a) 3x ( 32 - 1 ) = 216
b) 6x = 8 . 3x
c) ( 3x + 1 )3 = 1
\(3^x\times\left(3^2-1\right)=216\)
\(3^x\times\left(9-1\right)=216\)
\(3^x\times8=216\)
\(3^x=\frac{216}{8}\)
\(3^x=27\)
\(3^x=3^3\)
\(x=3\)
\(6^x=8\times3^x\)
\(\frac{6^x}{3^x}=8\)
\(\left(\frac{6}{3}\right)^x=2^3\)
\(2^x=2^3\)
\(x=3\)
\(\left(3x+1\right)^3=1\)
\(3x+1=1\)
\(3x=1-1\)
\(3x=0\)
\(x=0\)