\(2^{x+1}.3^x-6^x=216\)
\(\Leftrightarrow2^x2.3^x-2^x.3^x=216\)
\(\Leftrightarrow\left(2.3\right)^x\left(2-1\right)=216\)
\(\Leftrightarrow6^x=216\)
\(\Leftrightarrow6^x=6^3\)
\(\Leftrightarrow x=3\)
\(2^{x+1}.3^x-6^x=216\)
\(=>2^x.2.3^x-6^x=216\)
\(=>\left(2.3\right)^x.2-6^x=216\)
\(=>6^x.2-6^x=216\)
\(=>6^x.\left(2-1\right)=216\)
\(=>6^x.1=216\)
\(=>6^x=216:1=216\)
\(=>6^x=6^3\)
\(=>x=3\)
Vậy...
\(#NqHahh\)
\(2^{x+1}\cdot3^x-6^x=216\\\Rightarrow2^x\cdot2^1\cdot3^x-6^x=216\\\Rightarrow6^x\cdot2-6^x=216\\\Rightarrow6^x\cdot(2-1)=216\\\Rightarrow6^x=216\\\Rightarrow6^x=6^3\\\Rightarrow x=3\)