11,243%=\(\dfrac{2M+96n}{2M+992n}\) .100%
cách tìm M và n trên máy tính casino570
M=9n là kết quả cuối
\(\frac{2M+96n}{2M+1014}=\frac{11,56}{100}\)
cho hàm số: \(y=\left(2m-1\right)x+n\) với \(\left(m\ne\dfrac{1}{2}\right)\)
Tìm giá trị của m, n biết n=2m và đồ thị hàm số \(y=\left(2m-1\right)x+n\) cắt đồ thị hàm số \(y=\dfrac{1}{2}x-4\) tại một điểm trên trục tung
Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4
=>m=-2
Cho pt: \(mx^2-\left(2m+1\right)x+m+3=0\)
a) tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b) giả sử \(x_1;x_2\) là 2 nghiệm của pt trên. tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)
\(=4m^2+4m+1-4m^2-12m\)
\(=-8m+1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-8m+1>0\)
\(\Leftrightarrow-8m>-1\)
hay \(m< \dfrac{1}{8}\)
1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằng
a, \(4+4\sqrt{3}\) b, \(2+\sqrt{3}\) c,4 d, \(2\sqrt{3}\)
2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng
a, -2x+6 b,2x-6 c -6 d, 6
3, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúng
a, f(2)<f(3) b, f(-3)< f(-4) c, f (-4)>f(2) d, f(2)<(0)
4,cho tam giác ABC đều cạch a nội tiếp đg tròn (O;R) giá trị của R bằng
a, \(R=\dfrac{a\sqrt{3}}{3}\) b, R=a c, \(R=a\sqrt{3}\) d, \(R=\dfrac{a\sqrt{3}}{2}\)
1. \(2M-N=\dfrac{2}{2-\sqrt{3}}-\sqrt{6}.\sqrt{2}=\dfrac{2-2\sqrt{3}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}=\)\(\dfrac{2-4\sqrt{3}+6}{2-\sqrt{3}}=\dfrac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)
Đáp án C
2. Ta có: A= \(-x+\sqrt{\left(6-x\right)^2}=-x+\left|6-x\right|\)
Mà x>6 \(\Rightarrow6-x< 0\)A=-x-6+x=-6
Đáp án C
3. Vẽ đồ thị hàm f(x) ta có:
Ta thấy f(2)<f(3), chọn Đáp án A
4.
Khi đó, bán kính của đường tròn bằng \(\dfrac{2}{3}\)đường cao của tam giác đều ABC
Ta có: \(R=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)
Đáp án A
Câu 1: C
Câu 2: C
Câu 3: A
Câu 4: A
Help me!Câu này tính mãi mà hổng ra!
66 - 6 + 7 + 23 - 18 + 2 = 74
Hãy tìm cách tính nhanh phép tính trên mà vẫn ra kết quả là 74(đề chuẩn 100% lun,mk tính máy tính r`)
66 - 6 + 7 +23 - 18 + 2
= 60 + 30 - 18 + 2
= 90 - 18 + 2
= 72 + 2
= 74
Bạn ơi! cài bài này bạn tìm trên facebook ?
Bài này phải đổi là tính thông thường nhá bạn :D
Do tên đề bài sai hoặc phép tính sai nhà bạn
Đề ko chuẩn 100% -_-
\(x+\dfrac{2m+2}{2m+1}\) và \(y=\dfrac{m}{2m+1}\)
Tìm hệ thức liên hệ giữa x và y ko phụ thuộc vào m
Đề có vẻ lỗi đoạn x. Bạn xem lại.
Tìm GTLN và GTNN của: \(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\) (m là tham số thực)
\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)
\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)
\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)
\(\Leftrightarrow4S^2-16S+15\le0\)
\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)
\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)
\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)
Cho pt: \(m^2-\left(2x+1\right)x+m+3=0\)
a). Tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b). giả xử \(x_1;x_2\) là 2 nghiệm của pt trên. Tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
Người ta cắm 100 lá cờ màu trên một đoạn đường thẳng. Cứ 2m lại có 1 cây cờ. Vậy
quãng đường từ cây cờ đầu tiên đến cây cờ cuối cùng cách nhau ………m.
Vì khoảng cách = Số lá cờ - 1 nên số lần khoảng cách 2 m từ đầu đến cuối là 100 - 1 = 99 (lần 2m)
Quãng đường từ lá cờ đầu tiên đến lá cờ cuối cùng: 2 x 99 = 198 (m)
Đáp số: 198m