6x-8x(x-2)=6x-3(-x+2)+4
1. x^4+x^2-2=0; 2. x^3+3x^2+6x+4=0; 3. x^3-6x^2+8x=0; 4. x^4-8x^3-9x^2=0 Giúp với (;~;)
1/ \(x^4+x^2-2=0\)
\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
2/ \(x^3+3x^2+6x+4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))
\(\Leftrightarrow x=-1\).
3/ \(x^3-6x^2+8x=0\)
\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)
4/ \(x^4-8x^3-9x^2=0\)
\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)
Giải phương trình
a, (x^2-2)(x^2+x+1)=0
b, 16x^2 - 8x + 5=0
c, 2x^3 - x^2 - 8x + 4=0
d, 3x^3+6x^2 - 75x -150 = 0
e, 2x^5-3x^4+6x^3-8x^2+3=0
*vn:vô nghiệm.
a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).
b. \(16x^2-8x+5=0\)
\(\Leftrightarrow16x^2-8x+1+4=0\)
\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)
-Vậy S=∅.
c. \(2x^3-x^2-8x+4=0\)
\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)
-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).
d. \(3x^3+6x^2-75x-150=0\)
\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)
-Vậy \(S=\left\{-2;\pm5\right\}\)
Tìm x biết
1) 8x ^ 3 - 12x ^ 2 + 6x - 1 = 0
2) x ^ 3 - 6x ^ 2 + 12x - 8 = 27
3) x ^ 2 - 8x + 16 = 5 * (4 - x) ^ 3
4) (2 - x) ^ 3 = 6x(x - 2)
5) (x + 1) ^ 3 - (x - 1) ^ 3 - 6 * (x - 1) ^ 2 = - 10
6) (3 - x) ^ 3 - (x + 3) ^ 3 = 36x ^ 2 - 54x
1) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x\right)^2-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
2) \(x^3-6x^2+12x-8=27\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot2+3\cdot2^2\cdot x-2^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\)
3) \(x^2-8x+16=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(x-4\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(4-x\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow5\left(4-x\right)=1\)
\(\Leftrightarrow4-x=\dfrac{1}{5}\)
\(\Leftrightarrow x=4-\dfrac{1}{5}\)
\(\Leftrightarrow x=\dfrac{19}{5}\)
4) \(\left(2-x\right)^3=6x\left(x-2\right)\)
\(\Leftrightarrow8-12x+6x^2-x^3=6x^2-12x\)
\(\Leftrightarrow-12x+6x^2-6x^2+12x=8-x^3\)
\(\Leftrightarrow8-x^3=0\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
5) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x-3x\right)+\left(3x^2+3x^2\right)+\left(1+1\right)-6x^2+12x-6=-10\)
\(\Leftrightarrow0+0+0+\left(6x^2-6x^2\right)+12x-4=-10\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-10+4\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=\dfrac{-6}{12}\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
6) \(\left(3-x\right)^3-\left(x+3\right)^3=36x^2-54x\)
\(\Leftrightarrow27-27x+9x^2-x^3-x^3-9x^2-27x-27=36x^2-54x\)
\(\Leftrightarrow-54x-2x^3=36x^2-54x\)
\(\Leftrightarrow-2x^3=36x^2\)
\(\Leftrightarrow-2x^3-36x^2=0\)
\(\Leftrightarrow-2x^2\left(x+18\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x^2=0\\x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-18\end{matrix}\right.\)
Biết \(x^2-2x-1=0\). Tính biểu thức \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
phân tích thành đa thức nhân tử
x^3 + 8x^2 + 17x + 10
x^5 + x^4 + 1
x^3 - x^2 - 8x + 12
x^4 - 6x^3 + 11x^2 - 6x + 1
\(x^3-x^2-8x+12\)
\(=x^3+3x^2-4x^2-12x+4x+12\)
\(=x^2\left(x+3\right)-4x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-4x+4\right)\)
\(=\left(x+3\right)\left(x-2\right)^2\)
A= 6x/5x-20 - x/x^2-8x+16
A= 4/x+2 + 3/x-2 + 5x+2/4-x^2 - x^2-2x+4/x^3+8
A= ( 6x+1/x^2-6x) + 6x-1/x^2+6x) . x^2-36/x^2+1
A= ( x/x-1 - x+1/x) : ( x/x+1 - x-1/x)
oke nhé , giúp minh với
\(A=\dfrac{6x}{5x-20}-\dfrac{x}{x^2-8x+16}\)
\(ĐKXĐ:x\ne\pm4\)
\(\Leftrightarrow A=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)
\(\Leftrightarrow A=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{x\left(6x-29\right)}{5\left(x-4\right)^2}\)
\(A=\left(\dfrac{x}{x-1}-\dfrac{x+1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)
\(ĐKXĐ:x\ne0;x\ne\pm1\)
\(\Leftrightarrow A=\left(\dfrac{x^2}{x\left(x-1\right)}-\dfrac{x^2-1}{x\left(x-1\right)}\right):\left(\dfrac{x^2}{x\left(x+1\right)}-\dfrac{x^2-1}{x\left(x+1\right)}\right)\)
\(\Leftrightarrow A=\dfrac{x\left(x+1\right)}{x\left(x-1\right)}\)
\(\Leftrightarrow A=\dfrac{x+1}{x-1}\)
\(A=\left[\dfrac{6x+1}{x^2-6x}+\dfrac{6x-1}{x^2+6x}\right].\dfrac{x^2-36}{x^2+1}\)
\(ĐKXĐ:x\ne0;x\ne\pm6\)
\(\Leftrightarrow A=\left[\dfrac{6x+1}{x\left(x-6\right)}+\dfrac{6x-1}{x\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(\Leftrightarrow A=\left[\dfrac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(\Leftrightarrow A=\left[\dfrac{6x^2+37x+6+6x^2-37x+6}{x\left(x-6\right)\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{12\left(x^2+1\right)}{x\left(x-6\right)\left(x+6\right)}.\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{12}{x}\)
A= 6x/5x-20 - x/x^2-8x+16
A= 4/x+2 + 3/x-2 + 5x+2/4-x^2 - x^2-2x+4/x^3+8
A= ( 6x+1/x^2-6x) + 6x-1/x^2+6x) . x^2-36/x^2+1
A= ( x/x-1 - x+1/x) : ( x/x+1 - x-1/x)
oke nhé , giúp minh với
a: \(=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)
\(=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}=\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)
b: \(=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2-2x+4}{x^3+8}\)
\(=\dfrac{4x-8+3x+6-5x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{1}{x+2}\)
\(=\dfrac{2x-2-x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x}{\left(x+2\right)\left(x-2\right)}\)
c: \(\left(\dfrac{x}{x-1}-\dfrac{x+1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)
\(=\dfrac{x^2-x^2+1}{x\left(x-1\right)}:\dfrac{x^2-x^2+1}{x\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)
a) \(x^3+6x-7\)
b) \(4^2+8x-5\)
c) \(9^2-4y^2+6x-4y\)
a) Ta có: \(x^3+6x-7\)
\(=x^3-x+7x-7\)
\(=x\left(x-1\right)\left(x+1\right)+7\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+7\right)\)
b) Ta có: \(4x^2+8x-5\)
\(=4x^2+10x-2x-5\)
\(=2x\left(2x+5\right)-\left(2x+5\right)\)
\(=\left(2x+5\right)\left(2x-1\right)\)
c) Ta có: \(9x^2-4y^2+6x-4y\)
\(=9x^2+6x+1-\left(4y^2+4y+1\right)\)
\(=\left(3x+1\right)^2-\left(2y+1\right)^2\)
\(=\left(3x+1+2y+1\right)\left(3x+2y\right)\)
\(=\left(3x+2y\right)\left(3x+2y+2\right)\)
Tìm nghiệm của đa thức:
D(x) = (x- 1)^2 + (x+5)^2.
N(x) = x^2 - 6x + 8.
H(x) = 8x^2 - 6x - 2.
F(x) = 2x^3 + x^2 - 8x - 4.
a) Cho D(x) =0
=> (x -1)^2 +( x+5)^2 =0
=> (x-1) ^2 = -( x+5)^2
=> x-1 = -x-5
=> x+x = -5+1
2x = -4
=> x = -2
KL : x=-2 là nghiệm của D(x)
b) Cho N(x) =0
=> x^2 -6x +8 =0
=> x.(x-6) =-8
=> x = 2
KL: x=2 là nghiệm của N(x)
c) Cho H(x) =0
=> 8x^2 -6x -2 =0
2.( 4x^2 -3x -1) =0
=> 4x^2 -3x -1 =0
x.(4x-3) =1
=> x=1
KL: x=1 là nghiệm của H(x)
d) Cho F(x) =0
=> 2x^3 +x^2 -8x -4 =0
x( 2x^2 +x -8) = 4
=> x= 2
KL: x=2 là nghiệm của F(x)
Chúc bn học tốt !!!
a) x = 1 hoặc x = -5
b) x = 2 hoặc x = 4
c) x = 1 hoặc x = -1/4
d) x = -2 hoặc x = -1/2 hoặc x = 2