Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 2
Số lượng câu trả lời 9
Điểm GP 2
Điểm SP 7

Người theo dõi (0)

Đang theo dõi (0)


Câu trả lời:

Giả sử \(x^3+x^2+2025\) là số chính phương nhỏ hơn 10000. Ta có phương trình:
\(x^3+x^2+2025 =k^2(k \in N,k^2<10000 \Leftrightarrow k<100)\)
\(\Leftrightarrow \)\(2025=k^2-x^2(x+1)\)
\(\Leftrightarrow \)\(2025=(k-x\sqrt{x+1})(k+x\sqrt{x+1})\)
Mà \(k-x\sqrt{x+1} < k+x\sqrt{x+1}< 100\)(Vì \(k < 100\))
\(\Rightarrow \)\(\left[\begin{array}{} \begin{cases} k+x\sqrt{x+1}=81\\ k-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} k+x\sqrt{x+1}=75\\ k-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} 2k=106\\ k-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} 2k=102\\ k-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ 53-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} k=51\\ 51-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x\sqrt{x+1}=28 \end{cases}\\ \begin{cases} k=51\\ x\sqrt{x+1}=24 \end{cases}\\ \end{array} \right.\)

\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x^3+x^2-784=0 \end{cases}\\ \begin{cases} k=51\\ x^3+x^2-576=0 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x^3+x^2-784=0(PTVN) \end{cases}\\ \begin{cases} k=51\\ x^3-8x^2+9x^2-72x+72x-576=0 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\begin{cases} k=51\\ (x-8)(x^2+9x+72)=0 \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} k=51(t/m)\\ \left[\begin{array}{} x=8(t/m)\\ (x+\frac{9}{2})^2+\frac{207}{4}=0(PTVN) \end{array} \right. \end{cases}\)
Vậy chỉ có giá trị \(x=8\) thỏa mãn yêu cầu bài toán.
P/s: Cái c/m vô nghiệm kia mình không biết làm. Chỉ biết bấm máy tính không ra nghiệm nguyên