Cho đường thẳng và parabol . Tổng các giá trị của để và cắt nhau tại 2 điểm phân biệt và thoả mãn là
Cho Parabol (P): y = -2x2 và đường thẳng (d): y = x - m (m là tham số)
Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn: x1 + x2 = x1x2
Phương trình hoành độ giao điểm d và (P):
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)
Cho Parabol(P) : y=x² và đường thăng (d) : y=(2m-1)x-m+2 ( m là tham số)
A) c)m rằng với mới m đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt
B)Tìm các giá trị m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt A(x1;y1);B(x2;y2) thoả mãn x1y1+x2y2=0
nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)
\(2m-1=0\Leftrightarrow m=\frac{1}{2}\)\(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )
a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?
b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.
Tìm m sao cho: OH2 + OK2 = 6 mọi người hướng dẫ mk ý b vs
Cho parabol (P): y=x^2 và đường thẳng (d): y= 2(m-1)x-m^2+3. Hãy xác định giá trị của m để (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ: x1:x2 thoả mãn hệ thức: x1^2+x2^2 = 4
Cho Parabol (P): y = -2x2 và đường thẳng (d): y = x - m (m là tham số)
Tìm tất cả các giá trị tham số m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn điều kiện
x1 + x2 = x1x2
Phương trình hoành độ giao điểm:
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Rightarrow m>-\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\)
\(\Rightarrow m=1\) (thỏa mãn)
trong mặt phẳng toạ độ giao điểm của đường thẳng (d) y = (2m+5)x+2m+6 và parabol (P) y = x^2. tìm giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thoả mãn |x1|+|x2|=7
\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\left(2m+5\right)^2+4\left(2m+6\right)>0\)
\(\Leftrightarrow4m^2+20m+25+8m+24>0\)
\(\Leftrightarrow\left(2m+7\right)^2>0\) (luôn đúng)
Viet \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=-2m-6\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=7\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7^2\)
\(\Leftrightarrow\left(2m+5\right)^2=49\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-6\\m=1\end{matrix}\right.\)
-Chúc bạn học tốt-
Bài3 (2 đ): Cho parabol (P): y = -x2 và đường thẳng (d): y = -mx + m – 1 (m là tham số)
a)Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A và B phân biệt
b) Gọi x1, x2 lần lượt là hoành độ của hai điểm A và B. Tìm các giá trị của m thỏa mãn x12+ x22 = 17
Cho Parabol (P: y=x^2 và (d): y= 3x+ m^2 *-1 (với m là tham số) đường thẳngTìm tất cả các giá trị của tham số m để đường thẳng cắt Parabol tại hai điểm phân biệt A(x1 ,y1) B (x2, y2) sao cho x1,y1 thỏa mãn |x1|+2 |x2| = 3 : .
PTHĐGĐ là;
x^2-3x-m^2+1=0
Δ=(-3)^2-4(-m^2+1)=4m^2-4+9=4m^2+5>0
=>Phương trình luôn có hai nghiệm phân biệt
TH1: x1>0; x2>0
=>x1+2x2=3
mà x1+x2=3
nên x1=1; x2=1
x1*x2=-m^2+1
=>-m^2+1=1
=>m=0
TH2: x1<0; x2>0
=>-x1+2x2=3 và x1+x2=3
=>x1=1; x2=2
x1*x2=-m^2+1
=>-m^2+1=2
=>-m^2-1=0(loại)
TH2: x1>0; x2<0
=>x1-2x2=0 va x1+x2=3
=>x1=2 và x2=1
x1*x2=-m^2+1
=>-m^2+1=2
=>-m^2=1(loại)
TH3: x1<0; x2<0
=>-x1-2x2=3 và x1+x2=3
=>x1=9 và x2=-6
x1*x2=-m^2+1
=>-m^2+1=-54
=>-m^2=-55
=>\(m=\pm\sqrt{55}\)
cho parabol (P): y=x^2 và đường thẳng (d): y =3x-2m +1 tìm giá trị của m để (P) và (d) cắt nhau tại hai điển phân biệt có hoành độ giao điểm là x1;x2 thỏa mãn \(|x_1|=2|x_2|\)
cho đường thẳng (d) y=6x-m+3 (m là tham số) và parabol (p) y=x^2 tìm giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1 x2 thỏa mãn (x1-1)(x2^2-5x2+m-4)=2
PTHĐGĐ là;
x^2-6x+m-3=0
Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48
Để PT có hai nghiệm phân biệt thì -4m+48>0
=>m<12
(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2
=>(x1-1)(-x1x2+x2+x1x2-1)=2
=>x1x2-(x1+x2)+1=2
=>m-3-6+1=2
=>m-8=2
=>m=10