Cho ∆ ABC vuông tại A có đường cao AH, AB=6cm , C = 3/5. Tính BC,AH
cho tam giác ABC vuông tại a, đường cao AH , biết AB=6cm, \(\dfrac{AB}{BC}\) =\(\dfrac{3}{5}\) .Tính AC,AH
\(BC=AB:\dfrac{3}{5}=6:\dfrac{3}{5}=10\left(cm\right)\)
=>AC=8cm
=>AH=4,8cm
1, Tam giác ABC vuông tại A, kẻ đường cao AH
a.Tính AB, AC,BC, HC nếu AH= 6cm, BH= 4,5cm
b.Biết AB= 6cm, HB- 3cm. Tính AH, AC,CH
5, Cho tam giác ABC vuông tại A có AB=21cm, góc C= 40 độ
a.Tính AC
b,Tính BC
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB= 6cm, BC= 10cm có AH là đường cao a) Tính AC, AH? b) Tính góc B, góc C?
a) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 8cm, BH = 4cm. Tính: BC, HC, AH.
b) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 6cm, BH = 3cm. Tính: BC, HC, AH.
a: \(AH=4\sqrt{3}\left(cm\right)\)
HC=12cm
BC=16cm
Cho tam giác ABC vuông tại A đường cao AH biết AB=6cm , BH=3 cm Tính AH;BC;HC
Hình tự vẽ nha
a. Độ dài cạnh BC: \(BC=\dfrac{AB^2}{BH}\) \(=\dfrac{6^2}{3}\) \(=12\) \(\left(cm\right)\)
Ta có: \(BH+HC=BC\)
⇔ \(3\) \(+\) \(HC\) \(=\) \(12\)
⇒ \(HC=9\) \(\left(cm\right)\)
Độ dài AH: \(AH^2=BH\times HC\)
⇒ \(AH^2\)\(=\) \(3\) \(\times\) \(9\)
⇒ \(AH^2\)\(=\) \(27\)
⇒ \(AH\) \(=\) \(3\sqrt{3}\)
Vậy \(AH\) \(=\) \(3\sqrt{3}\) \(;\) \(HC=9\) \(cm\) \(;\) \(BC=12\) \(cm\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow6^2=3.BC\Rightarrow BC=12\left(cm\right)\)
tam giác ABC vuông tại A nên áp dụng Py-ta-go
\(\Rightarrow AC^2=BC^2-AB^2=12^2-6^2=108\Rightarrow AC=6\sqrt{3}\left(cm\right)\)
Ta có: \(CH=BC-BC=12-3=9\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.6\sqrt{3}}{12}=3\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=6^2-3^2=27\)
hay \(AH=3\sqrt{3}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow AC^2=\left(3\sqrt{3}\right)^2+9^2=108\)
hay \(AC=6\sqrt{3}\left(cm\right)\)
Câu 3. Cho tam giác ABC vuông tại A có đường cao AH, biết AH = 4a, HB= 2a, với a là
số thực dương
1)Tính HC theo a
2)Tính tan ABC
Câu 4.
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB= 6cm, AC= 8cm.
1) Tính độ dài các đoạn thẳng BC, AH?
2) Từ H kẻ HM AB, HN AC . Tính diện tích tứ giác AMHN ( làm tròn 2 chữ số phần
thập phân).
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6cm, BC = 10cm
a) Tính độ dài AC.
b) Tính diện tích tam giác ABC.
c) Tính độ dài đường cao AH.
a: AC=8cm
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: AH=4,8cm