Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê hòag tiến
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 9 2021 lúc 12:54

Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))

a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)

b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)

hoàng đá thủ
Xem chi tiết
Sahara
29 tháng 3 2023 lúc 20:53

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)

Nguyễn Thị Hồng Nhung
Xem chi tiết
unnamed
Xem chi tiết
Kaito Kid
17 tháng 3 2022 lúc 14:41

D

Tryechun🥶
17 tháng 3 2022 lúc 14:42

A

(っ◔◡◔)っ ♥ Kiera ♥
17 tháng 3 2022 lúc 15:16

D

đặng sĩ nguyên
Xem chi tiết
Nguyễn Minh Quang
23 tháng 10 2021 lúc 11:16

ta có :

undefined

Khách vãng lai đã xóa
đặng sĩ nguyên
23 tháng 10 2021 lúc 11:56

2022 mà bạn

Khách vãng lai đã xóa
Nguyễn Thái Hoàng Anh
Xem chi tiết
Đặng Ngọc Quỳnh
25 tháng 12 2020 lúc 19:30

\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)

\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)

Khách vãng lai đã xóa
dang thi thuy tien
Xem chi tiết
Chí Thành
Xem chi tiết