Cho dãy số u1=-2;un+1=un+n-1(n€N) Số hạng thứ 5 của dãy số là
Cho cấp số nhân (un) biết u1 = 3/2 và q = 1/2. Số u1=3/512 là số hạng thứ mấy của dãy
\(u_n=u_1\cdot q^{n-1}\\ \Rightarrow\dfrac{3}{512}=\dfrac{3}{2}\cdot\left(\dfrac{1}{2}\right)^{n-1}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{1}{256}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{1}{2^8}\\ \Leftrightarrow n-1=8\\ \Leftrightarrow n=9\)
Vậy \(\dfrac{3}{512}\) là số hạng thứ 9 của dãy.
Cho dãy số ( u n ) thỏa mãn u 1 = 1 u n = 2 u n - 1 + 1 , n ≥ 2 . Tổng S = u 1 + u 2 + . . . + u 20 bằng
A. 2 20 - 20
B. 2 21 - 20
C. 2 20
D. 2 21 - 20
Cho dãy số ( u n ) có u 1 = - 5 , u n + 1 = u n + 2 , n ∈ N * . Tổng S 5 = = u 1 + u 2 + . . . + u 5 bằng
A. 5
B. – 5
C. – 15
D. – 24
Chọn B.
Phương pháp:
Công thức tính tổng n số hạng đầu tiên của cấp số cộng có số hạng đầu u1 và công sai d
Cách giải:
Ta có: u n + 1 = u n + 2 , ∀ n ∈ ℕ *
⇒ ( u n ) là cấp số cộng có u 1 = - 5 , d = 2
Cho dãy số u n thỏa mãn u 1 = 1 u n - 2 u n - 1 + 1 , n ≥ 2 . Tổng S = u 1 + u 2 + . . . + u 20 bằng
A. 2 20 - 20
B. 2 21 - 22
C. 2 20
D. 2 21 - 20
Cho dãy số u n có u 1 = - 5 , u n + 1 = u n + 2 , n ∈ N * . Tổng S 5 = u 1 + u 2 + . . . + u 5 bằng
A. 5
B. – 5
C. – 15
D. – 24
Cho dãy số u n biết u 1 = 2 u n + 1 = 2 u n ∀ n ∈ N * . Tìm số hạng tổng quát của dãy số này?
A. u n = 2 n
B. u n = n n − 1
C. u n = 2
D. u n = 2 n + 1
1) cho dãy số được xác định bởi
a) Tính
2) cho dãy số được xác định bởi
b) \(\dfrac{13}{7}\) là số hạng thứ mấy của dãy
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Cho dãy số (un) biết u 1 = 2 u 2 = 2 u n = u n - 2 - 2 u n - 1 n ≥ 3 Số hạng thứ 4 của dãy số (un) bằng
A. 0
B. 21
C. -9
D. 34
Cho dãy số (un) thỏa mãn log u 1 + - 2 + log u 1 - 2 log u 8 = 2 log u 10 và un+1 = 10un, ∀ n ∈ R* Khi đó u2018bằng
A. 102000
B. 102008
C. 101008
D. 102017
Chọn A.
Dễ thấy un là cấp số nhân với q = 10
Ta có: u8 = 107u1; u10 = 109u1
Do đó PT
Giải PT ta được logu1 = -17 ⇔ u1 = 10-17 ⇒ u2018 = 102017 u1 = 102000